• Title/Summary/Keyword: High voltage divider

Search Result 58, Processing Time 0.027 seconds

A Design of PFC Circuit for Reducing the Harmonic in Constant Voltage-fed Electronic Ballast Circuit (정전압형 전자식 안정기 회로의 고조파 저감을 위한 PFC회로의 설계)

  • 이현우;이현무;고강훈;고희석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.41-48
    • /
    • 2004
  • In this paper, a PFC(Power Factor Correction) electronic ballast with constant voltage-fed is proposed. The proposed PFC electronic ballast is combined of a high-efficiency boost converter and a conventional half bridge inverter. It is proved that the ripple of input-current and the input-current's harmonic of the proposed PFC electronic ballast are reduced using the voltage divider and soft-switching technique. It is demonstrated that simulation results for fluorescent lamp correspond with theoretical analysis.

A Novel 800mV Beta-Multiplier Reference Current Source Circuit for Low-Power Low-Voltage Mixed-Mode Systems (저전압 저전력 혼성신호 시스템 설계를 위한 800mV 기준전류원 회로의 설계)

  • Kwon, Oh-Jun;Woo, Son-Bo;Kim, Kyeong-Rok;Kwack, Kae-Dal
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.585-586
    • /
    • 2008
  • In this paper, a novel beta-multiplier reference current source circuit for the 800mV power-supply voltage is presented. In order to cope with the narrow input common-mode range of the OpAmp in the reference circuit, shunt resistive voltage divider branches were deployed. High gain OpAmp was designed to compensate intrinsic low output resistance of the MOS transistors. The proposed reference circuit was designed in a standard 0.18um CMOS process with nominal Vth of 420mV and -450mV for nMOS and pMOS transistor respectively. The total power consumption including OpAmp is less than 50uW.

  • PDF

A Design of PFC Circuit for Reducing the Harmonic in Constant Voltage-fed Electronic Ballast Circuit (정전압형 전자식 안정기 회로의 고조파 저감을 위한 PFC회로의 설계)

  • 이현무;고강훈;고희석;이현우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.343-348
    • /
    • 2003
  • In this paper, a PFC(Power Factor Correction) electronic ballast with constant voltage-fed is proposed. The proposed PFC electronic ballast is combined of a High-efficiency boost converter and a conventional half bridge inverter. It is proved that the ripple of input-current and the input-current's harmonic of the proposed PFC electronic ballast are reduced using the voltage divider and soft-switching technique. It is demonstrated that simulation results for 40[W] fluorescent lamp correspond with theoretical analysis

  • PDF

Satellite Battery Cell Voltage Monitor System Using a Conventional Differential Amplifier (종래의 차동증폭기를 사용한 인공위성 배터리 셀 전압 감시 시스템)

  • Koo, Ja-Chun;Choi, Jae-Dong;Choi, Seong-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.113-118
    • /
    • 2005
  • This paper shows a satellite battery cell voltage monitor system to make differential voltage measurements when one or both measurement points are beyond voltage range allowed by a conventional differential amplifier. This system is particularly useful for monitoring the individual cell voltage of series-connected cells that constitute a rechargeable satellite battery in which some cell voltages must be measured in the presence of high common mode voltage.

A Study of Field-Ring Design using a Variety of Analysis Method in Insulated Gate Bipolar Transistor (IGBT)

  • Jung, Eun Sik;Kyoung, Sin-Su;Chung, Hunsuk;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1995-2003
    • /
    • 2014
  • Power semiconductor devices have been the major backbone for high-power electronic devices. One of important parameters in view of power semiconductor devices often characterize with a high breakdown voltage. Therefore, many efforts have been made, since the development of the Insulated Gate Bipolar Transistor (IGBT), toward having higher level of breakdown voltage, whereby the typical design thereof is focused on the structure using the field ring. In this study, in an attempt to make up more optimized field-ring structure, the characteristics of the field ring were investigated with the use of theoretical arithmetic model and methodologically the design of experiments (DOE). In addition, the IGBT having the field-ring structure was designed via simulation based on the finding from the above, the result of which was also analyzed. Lastly, the current study described the trench field-ring structure taking advantages of trench-etching process having the improved field-ring structure, not as simple as the conventional one. As a result of the simulation, it was found that the improved trench field-ring structure leads to more desirable voltage divider than relying on the conventional field-ring structure.

The breakdown characteristics of $N_2$ gas with lightning impulse voltage in the non-uniform electrode (불평등전극계에서 뇌임펄스전압에 대한 $N_2$기체의 절연파괴 특성)

  • Lee, Bok-Hee;Lee, Feng;Joe, Jeong-Hyeon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.301-304
    • /
    • 2008
  • This paper presents the experimental results on breakdown characteristics in $N_2$ gas under non-uniform electric fields caused by both the positive and negative lightning impulse voltages. $N_2$ gas have an advantage of eco-friendly and cost reduction, and safety aspects. In order to analyze the impulse pre-breakdown processes in $N_2$ gas, we carried out measurements and observations of the impulse breakdown voltages, pre-breakdown current and luminous signals. They were measured by a voltage divider, a shunt and a photo-multiplier tube, respectively. Additionally, the characteristics of discharge channels were observed by high speed cameras. The breakdown voltages in the positive polarity was lower than those in the negative polarity.

  • PDF

Transient Voltage Measuring System Using the Capacitive Electric Field Sensor (용량성 전장센서를 이용한 과도전압측정계)

  • Lee, Bok-Hee;Kil, Gyung-Suk;Ju, Mun-No;Lee, Sung-Heon
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.9-16
    • /
    • 1996
  • This paper deals with the capacitive voltage divider which can measure a transient voltages generated by operating a high voltage impulse generator. The transient voltage measuring system using the capacitive electric field sensor consists of the planar-type electric field sensor having a fast response characteristic and the wide-bandwidth voltage follower, and the input impedance of which is extremely high, about $10^{12}{\Omega}$. In order to analyze the response characteristics to a step input, the newly developed calibration method is proposed, and the error of voltage dividing ratio associated with set-up condition is investigated. Also the optimal set-up condition that is to be maintained within the range of 0.5 % is taken. From the calibration experiment, the frequency bandwidth of the transient voltage measuring system whose response time to a step input is about 15.8 ns, is from 6.37 Hz to 27.3 MHz. Therefore it is possible to measure the commercial frequency voltages as well as the transient over voltages without signal distortions.

  • PDF

A Study on the Improvement of Voltage Measuring Method of 22.9 kV-y Distribution Lines (22.9 kV-y 배전선로의 전압계측방법 개선에 관한 연구)

  • Kil, Gyung-Suk;Song, Jae-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.293-299
    • /
    • 1998
  • An objective of this study is to develop a voltage measuring device that uses a gas-filled switch (GS) on 22.9 kV-y extra-high voltage distribution lines. The voltage measuring device proposed in this paper is a kind of capacitive divider which consists of a detecting electrode attached outside of the bushing of GS, an impedance matching circuit, and a voltage buffer. It can be easily installed in an established GS without changing the structure. For the calibration and application investigations, the voltage measuring device was set up in the 25.8 kV 400 A GS, and a step pulse generator having 5 ns rise time is used. As a result, it was found that the frequency bandwidth of the voltage measuring device ranges from 1.35 Hz to about 13 MHz. The error of voltage dividing ratio which is evaluated by the commercial frequency voltage of 60 Hz was less than 0.2%. In addition, voltage dividing ratio in the commercial frequency voltage and in a non-oscillating impulse voltage were compared, and their deviation were less than 0.7%.

  • PDF

Design of Small-Area and High-Reliability 512-Bit EEPROM IP for UHF RFID Tag Chips (UHF RFID Tag Chip용 저면적·고신뢰성 512bit EEPROM IP 설계)

  • Lee, Dong-Hoon;Jin, Liyan;Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.302-312
    • /
    • 2012
  • In this paper, small-area and high-reliability design techniques of a 512-bit EEPROM are designed for UHF RFID tag chips. For a small-area technique, there are a WL driver circuit simplifying its decoding logic and a VREF generator using a resistor divider instead of a BGR. The layout size of the designed 512-bit EEPROM IP with MagnaChip's $0.18{\mu}m$ EEPROM is $59.465{\mu}m{\times}366.76{\mu}m$ which is 16.7% smaller than the conventional counterpart. Also, we solve a problem of breaking 5V devices by keeping VDDP voltage constant since a boosted output from a DC-DC converter is made discharge to the common ground VSS instead of VDDP (=3.15V) in getting out of the write mode.

Design and Implementation of High-Efficiency, Low-Power Switched-Capacitor DC-DC Converter (고효율, 저전력 Switched-Capacitor DC-DC 변환기의 설계 및 구현)

  • Kim, Nam-Kyun;Kim, Sang-Cheol;Bahng, Wook;Song, Geun-Ho;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.523-526
    • /
    • 2001
  • In this paper, we design and fabricate the high-efficiency and low-power switched-capacitor DC-DC converter. This converter consists of internal oscillator, output driver and output switches. The internal oscillator has 100kHz oscillation frequency and the output switches composed of one pMOS transistor and three nMOS transistors. According to the configuration of two external capacitors, the converter has three functions that are the Inverter, Doubler and Divider. The proposed converter is fabricated through the 0.8$\mu\textrm{m}$ 2-poly, 2-metal CMOS process. The simulation and experimental result for fabricated IC show that the proposed converter has the voltage conversion efficiency of 98% and power efficiency more than 95%.

  • PDF