• 제목/요약/키워드: High stiffness body

Search Result 109, Processing Time 0.024 seconds

Objective Hand of High-performance Silk Fabrics (기능성 가공된 견직물의 태)

  • Kim, Hyun-Ah;Ryu, Hyo-Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.5
    • /
    • pp.754-764
    • /
    • 2010
  • Most silk fabrics are produced only after the degumming process to make the best use of the properties and have restricted silk processing that do not hinder their performance. However, considering the highly increased preference for natural fibers and the shortage of raw silk, high-quality upgraded silk product functions are required by the development of a processing technology and a good design. This study analyzes the changes with the samples by the functional finish such as softening finishing, wash and wear, tannin weighting by measuring the objective hand of scoured silk and three finished ones using KES-FB. As a result, the change of objective hand of finished silk fabrics that improves functionality was analyzed and compared. The increase of KOSHI after the finish became stiffer show that the silk fabric samples are appropriate for summertime clothes with the retention of a certain clothing climate for the body. The stiffness of finished fabrics for the normal had a closer relationship with the density of fabrics than the type of finishing. The samples (after the softening finishes) maintain better elasticity according to the properties of the softener and the finishing agent. Although the specimens of this study were thin fabrics, their elasticity against compression increased after the softening finishes and became softer than degummed silk. The surface properties of georgette were changed by all types of finishing.

Change of early atherosclerotic markers in obese children (비만아에서 조기 동맥경화증 지표들의 변화)

  • Roh, Eui Jung;Yoon, Jung Min;Lim, Jae Woo;Cheon, Eun Jung;Ko, Kyoung Og
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.4
    • /
    • pp.368-374
    • /
    • 2006
  • Purpose : The prevalence of obesity in children is increasing rapidly. Epidemiologic studies suggest that obesity induced atherosclerosis may start in childhood. We investigated whether obese children show early abnormalities of the arterial wall and endothelial dysfunction. Methods : Thirty-eight obese children(14-16 years old of age, male, body mass index $29.40{\pm}3.18kg/m^2$) and forty-five age and sex-matched healthy control children(body mass index $18.43{\pm}1.01kg/m^2$) were enrolled. Their carotid artery intima-media thickness(IMT) and brachial artery flowmediated dilation(FMD) response were measured by high-quality ultrasound system, and compliance, distensibility, stiffness index, incremental elastic modulus and wall stress were calculated by equation. In addition, we looked at the relations between these arterial features and metabolic cardiovascular risk factors. Results : The obese children had significantly increased IMT($0.52{\pm}0.09mm$ vs $0.40{\pm}0.07mm$, P< 0.001) and markedly impaired FMD($7.35{\pm}7.78$ percent vs $20.34{\pm}16.81$ percent, P<0.001) than the healthy controls. But the compliance and distensibility were lower, and the stiffness index, incremental elastic modules and wall stress were higher in the obese group than the control group, but not statistically significantly. Body mass index was highly associated with increased IMT(r=0.612, P<0.001) and reduced FMD(r=-0.414, P<0.001). Conclusion : We showed the deleterious effect of child obesity on both early functional and structural atherosclerotic markers. The ultrasonic findings will be used for screening and follow up markers to identify high-risk patients among obese children.

A Study on the Ride Quality Enhancement of the High-speed Electric Multiple Unit (동력분산형 고속열차의 승차감 개선에 관한 연구)

  • Jeon, Chang-Sung;Kim, Sang-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.561-567
    • /
    • 2018
  • This study was carried out to improve the ride quality of high-speed electric multiple unit. Through dynamic analysis of the HEMU-430X, the range of the equivalent conicity with a critical speed of 300 km/h was between 0.05 and 0.25. The initial adopted wheel profile of HEMU-430X was S1002. The equivalent conicity of S1002 with the mileage of more than 40,000 km was about 0.033 and it was confirmed that XP55 is more suitable for stable operation because XP55 has the equivalent conicity of over 0.061. In order to improve ride quality of high-speed electric multiple unit, the change of installation angle of the yaw damper was suggested from $7.35^{\circ}$ to $0^{\circ}$. From sensitivity analysis and optimization, the air spring lateral and vertical stiffness was suggested to be reduced by 30% and the secondary vertical and lateral damper damping coefficient was increased by 50%. By applying this, it was expected that the car body acceleration could be improved by about 20% on average. The HEMU-430X's yaw damper installation angle was changed to $0^{\circ}$ and the damping coefficient of the lateral damper was increased by 30%. When the test run was carried out at the speed of 300 km/h on the Kyungbu high-speed line, the vehicle lateral acceleration had improved by 34.3%. The effect of additional improvement measures proposed in this paper will be tested in the on track test. The riding quality improvement process used in this study can be used to solve ride quality problems that can occur in commercial operation of high-speed electric multiple unit in the future.

Vibration Analysis of SAR Antenna Reflectors During Satellite Maneuver (위성 기동 시 SAR 안테나 반사판에 발생하는 진동 분석)

  • Kim, Tae-Hyun;Kim, Dae-Yeon;Suh, Jong-Eun;Han, Jae-Hung;Lee, Jae-Eun;Jung, Hwa-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.225-231
    • /
    • 2020
  • Recently, there has been an increasing demand for SAR satellite as it can be operated regardless of the weather condition. In general, main reflector of the SAR is formed of multiple deployable panels to increase performance in the constrained payload envelope. By nature, deployable structure lacks structural stiffness and it is vulnerable to external disturbances and excitation. In particular, SAR satellites may have high levels of vibration occurring at the antenna reflecting surface due to higher angular rate requirements. During image capturing it is important to keep high surface accuracy of the reflector for the quality of images. In this research, a performance degradation of deployable SAR antenna due to structural deformation is analyzed. Panels for main reflectors are assumed to be flexible structures and multi-body simulation environment is established. Then, deflection of the panel is calculated while the satellite performs maneuvers. In addition, antenna gain and beam pointing error are analyzed to determine how these deflections affect antenna performance and mission.

Arthroscopic Retrieval Analysis for Intra-articular Foreign Body of the Knee Joint (슬관절내 이물질에 대한 관절경적 제거술식의 분석)

  • Lee, Byung-Ill;Choi, Hyung-Suk;Jo, Joo-Hyoung;Kwon, Sai-Won
    • Journal of the Korean Arthroscopy Society
    • /
    • v.12 no.3
    • /
    • pp.211-216
    • /
    • 2008
  • Purpose: The frequency of foreign body in the knee joint is not as high, but it sometimes required wide or multiple arthrotomy in order to remove, which can baffle the surgeon in some ways. Our study is to evaluate for effectiveness of arthroscopic retrieval for intra-articular foreign body in the knee joint. Materials and Methods: The 22 patients(16 males, 6 females) had received arthroscopic foreign body retrieval in the knee joint from March 1983 to September 2006. The causes of foreign bodies of the knee joint were 7 of trauma (31.9%) related cases, 13 of surgery related cases (59.0%), 2 found during follow up after operation (8.1%) in pathologies of foreign body. Results: There were 15 of metal showed the most percentage (68.1%), 7 of non-metal (31.9%) in types of foreign bodies, and others included bullet, suture material, pencil lead, broken wire etc. All cases were used by arthroscopic techniques. All foreign bodies were removed easily and were showed no complication such as postoperative joint stiffness. Conclusion: Arthroscopic foreign body retrieval in the knee joint is effective surgery in terms of easy access to foreign body and less postoperative complication.

  • PDF

Feasibility of Spin-Echo Echo-Planar Imaging MR Elastography in Livers of Children and Young Adults

  • Kim, Jin Kyem;Yoon, Haesung;Lee, Mi-Jung;Kim, Myung-Joon;Han, Kyunghwa;Koh, Hong;Kim, Seung;Han, Seok Joo;Shin, Hyun Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.251-258
    • /
    • 2019
  • Purpose: To assess the feasibility of the use of spin-echo echo-planar imaging (SE-EPI) magnetic resonance elastography (MRE) in livers of children and young adults. Materials and Methods: Patients (${\leq}20$ years old) who underwent 3T SE-EPI MRE were included retrospectively. Subjects were divided into three groups according to the purpose of the liver MRI: suspicion of fatty liver or focal fat deposition in the liver (FAT group), liver fibrosis after receiving a Kasai operation from biliary atresia (BA group), and hepatic iron deposition after receiving chemotherapy or transfusions (IRON group). Technical failure of MRE was defined when a stiffness map showed no pixel value with a confidence index higher than 95%, and the patients were divided as success and failure groups accordingly. Clinical findings including age, gender, weight, height, and body mass index and magnetic resonance imaging results including proton density fat fraction (PDFF), $T2^*$, and MRE values were assessed. Factors affecting failure of MRE were evaluated and the image quality in wave propagation image and stiffness map was evaluated using the appropriate scores. Results: Among total 240 patients (median 15 years, 211 patients in the FAT, 21 patients in the BA, and 8 patients in the IRON groups), technical failure was noted in six patients in the IRON group (6/8 patients, 75%), while there were no failures noted in the FAT and BA groups. These six patients had $T2^*$ values ranging from 0.9 to 3.8 ms. The image quality scores were not significantly different between the FAT and BA groups (P > 0.999), while the scores were significantly lower in the IRON group (P < 0.001). Conclusion: The 3T SE-EPI MRE in children and young adults had a high technical success rate. The technical failure was occurred in children with decreased $T2^*$ value (${\leq}3.8ms$) from iron deposition.

Study on the Design Process to minimize the Weight of the Damping Material (제진재 경량화를 위한 설계 프로세스 연구)

  • Kim, Ki-Chang;Kwon, Jo-Seph;Kim, Chan-Mook;Kim, Jin-Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2012
  • Sound packages and damping materials have been widely applied on the floor to decrease the interior noise of a vehicle. Based on the previous researches on the low-noise vehicles, weight optimization through minimization of damping material usage is required while decreasing mid and high frequency range noise by application of sound packages. This paper describes the analysis process of robust design of vehicle body structure before applying damping materials and focuses on the analysis and test process of the location optimization at the stage of damping material application. A vibration experiment for the analysis of floor panel velocity with respect to the excitation of suspension attachment parts at the underfloor of a vehicle is performed. And through the improvement correlation between FEA and TEST, a design guide to optimize damping materials application in the early design stage is proposed. A research on vibration damping steel sheets and liquid acoustic spray on deadener(LASD) is performed to minimize manufacturing time and to minimize the space for pre-existing asphalt damping materials. As results of this study, panel stiffness is achieved through curved surface panel and bead optimization. And test baseline of optimum design is suggested through damping material optimization. And finally, through re-establishing the analysis process for vibration reduction of vehicle floors and lightweight design of damping materials, it is possible to design damping materials efficiently in the preceding stage of design.

Age at Menarche and Brachial-ankle Pulse Wave Velocity in Women with Metabolic Syndrome

  • Jo, Yoon-Kyung;Im, Jee-Aee
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Early age at menarche, which is indicator of early biological maturity, has been shown to be associated with increased adult body mass index. Early menarche has also been associated with many cardiovascular disease risk factors and metabolic syndrome. To evaluate the impact of menarche to cardiovascular risk factor, we assessed by age at menarche, brachial-ankle pulse wave velocity (baPWV), which represents arterial stiffness, in women with or without metabolic syndrome. The subjects recruited for this study were three hundred one women. Relatively early menarche and relatively late menarche were classified according to less than $50^{th}$ percentile for relatively early menarche, and great than the $50^{th}$ percentile for relatively late menarche. Subject were divided four group, 1) women who had not adulthood metabolic syndrome and relatively early menarche, 2) women who had not adulthood metabolic syndrome and relatively late menarche, 3) women who had adulthood metabolic syndrome and relatively early menarche, 4) women who had adulthood metabolic syndrome and relatively late menarche. Women who had a relatively early menarche with adulthood metabolic syndrome had significantly high levels of blood pressure, triglyceride, fasting insulin and homeostatic model assessment of insulin resistance (HOMA-IR) levels than women with late menarche with adulthood metabolic syndrome, and had significantly lower HDL-cholesterol levels. And also, women who underwent a relatively early menarche with metabolic syndrome had highest level of baPWV in adult. In this study we found effect of age at menarche on adulthood metabolic risk factors for cardiovascular disease (e.g., baPWV, insulin resistance, hyperlipidemia) in Korean women.

  • PDF

Evaluation of Materials Related to Gender-Preferences for the Application of Cooperative Robot Skin (협동 로봇 스킨에 적용하기 위한 재료의 성별 선호도와 관련된 자료 조사)

  • Son, Minhee;Shin, Dongwon;Lee, Caroline Sunyong
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.2-25
    • /
    • 2021
  • This study evaluated gender preferences regarding the mechanical properties of polymers that are typically used as cooperative robot skin. Gender-based preferences of workers aged 20~30 and polydimethylsiloxane were examined according to the body parts which is most frequently in contact with the robot during operation. The factors influencing preference, i.e., stiffness and stickiness, as measured by strain rate and contact angle, respectively, were analyzed to compare gender-based differences. Female preferred stiffer materials with small strain rates while male preferred softer materials with large strain rates. As a result of evaluating mechanical properties of the materials to relate to gender-based preference, we found that female tended to prefer Dragon-skin with the lowest stickiness, and a low strain rate, during compressive creep tests. In contrast, male tended to prefer Ecoflex with high strain rate regardless of stickiness. Therefore, these results provide basis for material selection when considering cooperative robot skin.

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.