DOI QR코드

DOI QR Code

Evaluation of Materials Related to Gender-Preferences for the Application of Cooperative Robot Skin

협동 로봇 스킨에 적용하기 위한 재료의 성별 선호도와 관련된 자료 조사

  • Son, Minhee (Department of Materials and Chemical Engineering, Hanyang University) ;
  • Shin, Dongwon (Department of Materials and Chemical Engineering, Hanyang University) ;
  • Lee, Caroline Sunyong (Department of Materials and Chemical Engineering, Hanyang University)
  • 손민희 (한양대학교 재료화학공학과) ;
  • 신동원 (한양대학교 재료화학공학과) ;
  • 이선영 (한양대학교 재료화학공학과)
  • Received : 2021.02.26
  • Accepted : 2021.04.14
  • Published : 2021.06.20

Abstract

This study evaluated gender preferences regarding the mechanical properties of polymers that are typically used as cooperative robot skin. Gender-based preferences of workers aged 20~30 and polydimethylsiloxane were examined according to the body parts which is most frequently in contact with the robot during operation. The factors influencing preference, i.e., stiffness and stickiness, as measured by strain rate and contact angle, respectively, were analyzed to compare gender-based differences. Female preferred stiffer materials with small strain rates while male preferred softer materials with large strain rates. As a result of evaluating mechanical properties of the materials to relate to gender-based preference, we found that female tended to prefer Dragon-skin with the lowest stickiness, and a low strain rate, during compressive creep tests. In contrast, male tended to prefer Ecoflex with high strain rate regardless of stickiness. Therefore, these results provide basis for material selection when considering cooperative robot skin.

본 연구에서는 일반적으로 협동 로봇의 스킨으로 사용될 수 있는 고분자 재료 선정 및 기계적 특성 검사를 진행하고, 각 재료에 대한 성별 선호도 설문조사를 진행하였다. 조사는 20~30세의 근무자 225명(남: 124명, 여: 101명)을 대상으로 작업 중 로봇과 가장 많이 접촉하는 어깨, 팔꿈치 별로 선정된 Dragon-skin, Ecoflex, 및 polydimethylsiloxane(PDMS)에 대한 성별에 따른 선호도 조사로 진행하였다. 설문은 각각 설문자들이 느끼는 재료에 대한 인식 단단함, 끈적임, 익숙함, 선호도 4종류로 구분하여 진행되었고, 단단함과 끈적임은 각각 재료의 변형률과 접촉각으로 측정되었다. 선호도 조사 결과, 여성은 변형률이 작은, 더 단단한 재료를 선호하는 반면, 남성은 변형률이 큰 부드러운 재료를 선호했다. 성별에 따른 선호도와 관련하여 재료의 특성을 평가한 결과, 여성은 끈적임이 낮고 변형률이 낮은 Dragon-skin을 선호하는 경향이 있는 반면, 남성은 끈적임에 관계없이 변형률이 높은 Ecoflex를 선호하는 경향이 있음을 확인하였다. 따라서 이러한 결과는 협동 로봇 스킨 제작을 고려할 때 재료 선택에 기준이 될 것으로 보인다.

Keywords

Acknowledgement

This research was supported by Support Program for Women in Science, Engineering and Technology through the Center for Women In Science, Engineering and Technology (WISET) funded by the Ministry of Science and ICT (No. WISET202003GI01). The authors would like to thank KESTONECG for performing the statistical analysis.

References

  1. Berthiaume, M. D. (1999). Silicones in Cosmetics, in: Principles of Polymer Science and Technology in Cosmetics and Personal Care, Marcel Dekker, New York, pp. 275-324.
  2. Bongaerts, J. H. H., Fourtouni, K., and Stokes, J. R. (2007). Soft-tribology: Lubrication in a Compliant PDMS-PDMS Contact, Tribology International, 40, pp. 1531-1542. https://doi.org/10.1016/j.triboint.2007.01.007
  3. Choi, D., Kim, H., Son, M., Kim, H., Lee, H. C., and Lee, C. S. (2019). Fabrication of a Kinetically Sprayed CuO Ultra-thin Film to Evaluate CO Gas Sensing Parameters, New Journal of Chemistry, 43, pp. 7814-7821. https://doi.org/10.1039/c9nj00289h
  4. Gerde, J. A., Hammond, E. G., and White, P. J. (2011). Influence of Polydimethylsiloxane on the Degradation of Soybean Oil at Frying Temperature, Journal of the American Oil Chemists' Society, 88, 1573. https://doi.org/10.1007/s11746-011-1810-3
  5. Goddard, E. D. and Gruber, J. V. (1999). Principles of Polymer Science and Technology in Cosmetics and Personal Care. CRC Press.
  6. Jeong, J.-Y., Lee, E. J., Park, H., and Chu, W.-S. (2020). Exo-Skeletal Flexible Structure for Communal Touch Device, Journal of Appropriate Technology, 6(2), pp. 219-225. https://doi.org/10.37675/jap.2020.6.2.219
  7. Kim, D.-R., Jang, K.-H., Chu, W.-S., Choi, D., Lee, W. I., Lee, C. S., and Ahn, S.-H. (2019). Preference for Case Materials in Smart Devices: A Comparative Study in Korea, USA, and Tanzania. International Journal of Precision Engineering and Manufacturing, 20, pp. 749-767. https://doi.org/10.1007/s12541-019-00022-2
  8. Kim, J., Alspach, A., and Yamane, K. (2015). 3D Printed Soft Skin for Safe Human-Robot Interaction, In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2419-2425.
  9. Lin, C.-H., Yeh, Y.-H., Lin, W.-C., and Yang, M.-C. (2014). Novel Silicone Hydrogel based on PDMS and PEGMA for Contact Lens Application, Colloids and Surfaces B: Biointerfaces, 123, pp. 986-994. https://doi.org/10.1016/j.colsurfb.2014.10.053
  10. Mark, J. and Goldberg, M. A. (1988). Multiple Regression Analysis and Mass Assessment: A Review of the Issues, Appraisal Journal, 56, p. 89.
  11. Pang, G., Deng, J., Wang, F., Zhang, J., Pang, Z., and Yang, G. (2018). Development of Flexible Robot Skin for Safe and Natural Human-Robot Collaboration, Micromachines, 9(11), 576. https://doi.org/10.3390/mi9110576
  12. Roos, P. A. (1985). Gender and work: A comparative analysis of industrial societies, SUNY Press.
  13. Shimizu, R. and Nonomura, Y. (2018). Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties, Journal of Oleo Science, 67(1), pp. 47-54. https://doi.org/10.5650/jos.ess17152
  14. Shirado, H., Nonomura, Y., and Maeno, T. (2006). Realization of Human Skin-like Texture by Emulating Surface Shape Pattern and Elastic Structure, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems 2006, IEEE, Alexandria, Virginia, USA.
  15. Taisuke, S., Hiroyasu, I., and Sugano, S. (2008). Shock Absorbing Skin Design for Human-Symbiotic Robot at the Worst Case Collision, In Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots, pp. 481-486.
  16. Wu, J., Xia, J., Lei, W., and Wang, B.-P. (2013). Advanced Understanding of Stickiness on Superhydrophobic Surfaces, Scientific Reports, 3, pp. 1-4.
  17. Yamashita, Y., Ishihara, H., Ikeda, T., and Asada, M. (2019). Investigation of Causal Relationship Between Touch Sensations of Robots and Personality Impressions by Path Analysis, International Journal of Social Robotics, 11, pp. 141-150. https://doi.org/10.1007/s12369-018-0483-6