• Title/Summary/Keyword: High Resolution TEM

Search Result 165, Processing Time 0.027 seconds

Comprehensive Structural Characterization of Commercial Blue Light Emitting Diode by Using High-Angle Annular Dark Filed Scanning Transmission Electron Microscopy and Transmission Electron Microscopy (고각 환형 암시야 주사투과전자현미경기법과 투과전자현미경기법을 이용한 상용 청색 발광다이오드의 종합적인 구조분석)

  • Kim, Dong-Yeob;Hong, Soon-Ku;Chung, Tae-Hoon;Lee, Sang Hern;Baek, Jong Hyeob
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • This study suggested comprehensive structural characterization methods for the commercial blue light emitting diodes(LEDs). By using the Z-contrast intensity profile of Cs-corrected high-angle annular dark field scanning transmission electron microscope(HAADF-STEM) images from a commercial lateral GaN-based blue light emitting diode, we obtained important structural information on the epilayer structure of the LED, which would have been difficult to obtain by conventional analysis. This method was simple but very powerful to obtain structural and chemical information on epi-structures in a nanometer-scale resolution. One of the examples was that we could determine whether the barrier in the multi-quantum well(MQW) was GaN or InGaN. Plan-view TEM observations were performed from the commercial blue LED to characterize the threading dislocations(TDs) and the related V-pit defects. Each TD observed in the region with the total LED epilayer structure including the MQW showed V-pit defects for almost of TDs independent of the TD types: edge-, screw-, mixed TDs. The total TD density from the region with the total LED epilayer structure including the MQW was about $3.6{\times}10^8cm^{-2}$ with a relative ratio of Edge- : Screw- :Mixed-TD portion as 80%: 7%: 13%. However, in the mesa-etched region without the MQW total TD density was about $2.5{\times}10^8cm^{-2}$ with a relative ratio of Edge- : Screw- :Mixed-TD portion of 86%: 5%: 9 %. The higher TD density in the total LED epilayer structure implied new generation of TDs mostly from the MQW region.

Synthesis of self-aligned carbon nanotubes on a Ni particles using Chemical Vapour Deposition

  • Park, Gyu-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.64-64
    • /
    • 2000
  • Since its discovery in 1991, the carbon nanotube has attracted much attention all over the world; and several method have been developed to synthesize carbon nanotubes. According to theoretical calculations, carbon nanotubes have many unique properties, such as high mechanical strength, capillary properties, and remarkable electronical conductivity, all of which suggest a wide range of potential applications in the future. Here we report the synthesis in the catalytic decomposition of acetylene at ~65 $0^{\circ}C$ over Ni deposited on SiO2, For the catalyst preparation, Ni was deposited to the thickness of 100-300A using effusion cell. Different approaches using porous materials and HF or NH3 treated samples have been tried for synthesis of carbon nanotubes. It is decisive step for synthesis of carbon nanotubes to form a round Ni particles. We show that the formation of round Ni particles by heat treatment without any pre-treatment such as chemical etching and observe the similar size of Ni particles and carbon nanotubes. Carbon nanotubes were synthesized by chemial vapour deposition ushin C2H2 gas for source material on Ni coated Si substrate. Ni film gaving 20~90nm thickness was changed into Ni particles with 30~90nm diameter. Heat treatment of Ni fim is a crucial role for the growth of carbon nanotube, High-resolution transmission electron microscopy images show that they are multi-walled nanotube. Raman spectrum shows its peak at 1349cm-1(D band) is much weaker than that at 1573cm-1(G band). We believe that carbon nanotubes contains much less defects. Long carbon nanotubes with length more than several $\mu$m and the carbon particles with round shape were obtained by CVD at ~$650^{\circ}C$ on the Ni droplets. SEM micrograph nanotubes was identified by SEM. Finally, we performed TEM anaylsis on the caron nanotubes to determine whether or not these film structures are truly caron nanotubes, as opposed to carbon fiber-like structures.

  • PDF

Development of Ultra-Thin TiO2 Coated WO3 Inverse Opal Photoelectrode for Dye-Sensitized Solar Cells (염료감응형 태양전지로의 응용을 위한 얇은 TiO2가 코팅 된 WO3 역오팔 광전극의 개발)

  • Arunachalam, Maheswari;Kwag, Seoui;Lee, Inho;Kim, Chung Soo;Lee, Sang-Kwon;Kang, Soon Hyung
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.491-496
    • /
    • 2019
  • In this study, we prepare pure $WO_3$ inverse opal(IO) film with a thickness of approximately $3{\mu}m$ by electrodeposition, and an ultra-thin $TiO_2$ layer having a thickness of 2 nm is deposited on $WO_3$ IO film by atomic layer deposition. Both sets of photoelectrochemical properties are evaluated after developing dye-sensitized solar cells(DSSCs). In addition, morphological, crystalline and optical properties of the developed films are evaluated through field-emission scanning electron microscopy(FE-SEM), High-resolution transmission electron microscopy(HR-TEM), X-ray diffraction(XRD) and UV/visible/infrared spectrophotometry. In particular, pure $WO_3$ IO based DSSCs show low $V_{OC}$, $J_{SC}$ and fill factor of 0.25 V, $0.89mA/cm^2$ and 18.9 %, achieving an efficiency of 0.04 %, whereas the $TiO_2/WO_3$ IO based DSSCs exhibit $V_{OC}$, $J_{SC}$ and fill factor of 0.57 V, $1.18mA/cm^2$ and 50.1 %, revealing an overall conversion efficiency of 0.34 %, probably attributable to the high dye adsorption and suppressed charge recombination reaction.

GaN Epitaxy with PA-MBE on HF Cleaned Cobalt-silicide Buffer Layer (HF 크리닝 처리한 코발트실리사이드 버퍼층 위에 PA-MBE로 성장시킨 GaN의 에피택시)

  • Ha, Jun-Seok;Chang, Ji-Ho;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.409-413
    • /
    • 2010
  • We fabricated 10 nm-thick cobalt silicide($CoSi_2$) as a buffer layer on a p-type Si(100) substrate to investigate the possibility of GaN epitaxial growth on $CoSi_2/Si(100)$ substrates. We deposited 500 nm-GaN on the cobalt silicide buffer layer at low temperature with a PA-MBE (plasma assisted-molecular beam epitaxy) after the $CoSi_2/Si$ substrates were cleaned by HF solution. An optical microscopy, AFM, TEM, and HR-XRD (high resolution X-ray diffractometer) were employed to determine the GaN epitaxy. For the GaN samples without HF cleaning, they showed no GaN epitaxial growth. For the GaN samples with HF cleaning, they showed $4\;{\mu}m$-thick GaN epitaxial growth due to surface etching of the silicide layers. Through XRD $\omega$-scan of GaN <0002> direction, we confirmed the cyrstallinity of GaN epitaxy is $2.7^{\circ}$ which is comparable with that of sapphire substrate. Our result implied that $CoSi_2/Si(100)$ substrate would be a good buffer and substrate for GaN epitaxial growth.

Preparation and Characteristic of Size Controlled Platy Silver by Polyol Process with $PdCl_2$ ($PdCl_2$ 첨가 폴리올공정(工程)을 이용(利用)한 판상 은(銀) 분말(粉末) 제조(製造) 및 특성(特性))

  • Shin, Gi-Wung;Ahn, Jong-Gwan;Kim, Dong-Jin;Cho, Sung-Wook;Ahn, Jea-Woo
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.58-67
    • /
    • 2010
  • Platy silver powders with varied size and thickness were prepared by polyol process with $PdCl_2$ in ethylene glycol and characterized its properties and investigated the effects of reaction time, $NH_4OH$, PVP(poly-vinylpyrrolidone) and $PdCl_2$. The characteristics of the products were verified by scanning electron microscopy(SEM), high resolution transmitted electron microscopy(HR-TEM), X-ray diffraction(XRD) and particle size analyzer(PSA) and image analyzer. Platy silver powder was prepared about $5.5\;{\mu}m$ of size and $0.2\;{\mu}m$ at 120minute. It was found that the size of powders increased by the increasing of $NH_4OH$ and $PdCl_2$ concentrations, and the thickness of powders was decreased by increasing of PVP concentration.

Role of Aluminum Top-layer on Synthesis of Carbon Nanotubes using Laminated Catalyst(Al/Fe/Al) layer (적층구조 촉매층(Al/Fe/Al)을 이용한 탄소나노튜브의 합성에서 최상층 알루미늄 층의 역할)

  • Song, W.;Choi, W.C.;Jeon, C.;Ryu, D.H.;Lee, S.Y.;Shin, Y.S.;Park, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.377-382
    • /
    • 2007
  • In this study, we report the synthesis of the single-walled carbon nanotubes(SWCNTs) using laminated catalyst(Al/Fe/Al) layer deposited by sputter on Si(001). SWCNTs are grown by thermal chemical vapor deposition (TCVD) method. As the results of scanning electron microscopy(SEM), high resolution transmission electron microscopy(HR-TEM) and Raman spectroscopy, we confirmed the SWCNTs bundles with narrow diameter distribution of $1.14{\sim}1.32\;nm$ and average G&D ratio of 22.76. Compare to the sample having Fe/Al catalyst layer, it can be proposed that the top-aluminum incorporated with iron catalyst plays an important role in growing process of CNTs as a agglomeration barrier of the Fe catalyst. Thus, we suggest that a proper quantity of aluminium metal incorporated in Fe catalyst induce small and uniform iron catalysts causing SWCNTs with narrow diameter distribution.

Structural and optical properties of Si nanowires grown with island-catalyzed Au-Si by rapid thermal chemical vapor deposition(RTCVD) (Au-Si을 촉매로 급속화학기상증착법으로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Kwak, D.W.;Lee, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • We have demonstrated structural evolution and optical properties of the Si-NWs on Si (111) substrates with synthesized nanoscale Au-Si islands by rapid thermal chemical vapor deposition(RTCVD). Au nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. Si-NWs were grown by a mixture gas of $SiH_4\;and\;H_2$ at pressures of $0.1{\sim}1.0$Torr and temperatures of $450{\sim}650^{\circ}C$. SEM measurements showed the formation of Si-NWs well-aligned vertically for Si (111) surfaces. The resulting NWs are 30-100nm in diameter and $0.4{\sim}12um$ in length depending on growth conditions. HR-TEM measurements indicated that Si-NWs are single crystals convered with about 3nm thick layers of amorphous oxide. In addition, optical properties of NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si optical phonon peak with a shoulder at $480cm^{-1}$ were observed in Raman spectra of Si-NWs.

Structural Characterization of Bismuth Zinc Oxide Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy (플라즈마분자선에피탁시법으로 성장한 산화비스무스아연 박막의 구조특성)

  • Lim, Dong-Seok;Shin, Eun-Jung;Lim, Se-Hwan;Han, Seok-Kyu;Lee, Hyo-Sung;Hong, Soon-Ku;Joeng, Myoung-Ho;Lee, Jeong-Yong;Cho, Hyung-Koun;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.563-567
    • /
    • 2011
  • We report the structural characterization of $Bi_xZn_{1-x}O$ thin films grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. By increasing the Bi flux during the growth process, $Bi_xZn_{1-x}O$ thin films with various Bi contents (x = 0~13.17 atomic %) were prepared. X-ray diffraction (XRD) measurements revealed the formation of Bi-oxide phase in (Bi)ZnO after increasing the Bi content. However, it was impossible to determine whether the formed Bi-oxide phase was the monoclinic structure ${\alpha}-Bi_2O_3$ or the tetragonal structure ${\beta}-Bi_2O_3$ by means of XRD ${\theta}-2{\theta}$ measurements, as the observed diffraction peaks of the $2{\theta}$ value at ~28 were very close to reflection of the (012) plane for the monoclinic structure ${\alpha}-Bi_2O_3$ at 28.064 and the reflection of the (201) plane for the tetragonal structure ${\beta}-Bi_2O_3$ at 27.946. By means of transmission electron microscopy (TEM) using a diffraction pattern analysis and a high-resolution lattice image, it was finally determined as the monoclinic structure ${\alpha}-Bi_2O_3$ phase. To investigate the distribution of the Bi and Bi-oxide phases in BiZnO films, elemental mapping using energy dispersive spectroscopy equipped with TEM was performed. Considering both the XRD and the elemental mapping results, it was concluded that hexagonal-structure wurtzite $Bi_xZn_{1-x}O$ thin films were grown at a low Bi content (x = ~2.37 atomic %) without the formation of ${\alpha}-Bi_2O_3$. However, the increased Bi content (x = 4.63~13.17 atomic %) resulted in the formation of the ${\alpha}-Bi_2O_3$ phase in the wurtzite (Bi)ZnO matrix.

Development of Continuous Galvanization-compatible Martensitic Steel

  • Gong, Y.F.;Song, T.J.;Kim, Han S.;Kwak, J.H.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The development of martensitic grades which can be processed in continuous galvanizing lines requires the reduction of the oxides formed on the steel during the hot dip process. This reduction mechanism was investigated in detail by means of High Resolution Transmission Electron Microscopy (HR-TEM) of cross-sectional samples. Annealing of a martensitic steel in a 10% $H_2+N_2$ atmosphere with the dew point of $-35^{\circ}C$ resulted in the formation of a thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film and amorphous $_{a-X}MnO.SiO_{2}$ oxide particles on the surface. During the hot dip galvanizing in Zn-0.13%Al, the thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was reduced by the Al. The $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides however remained embedded in the Zn coating close to the steel/coating interface. No $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formation was observed. During hot dip galvanizing in Zn-0.20%Al, the $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was also reduced and the amorphous $_{a-X}MnO.SiO_{2}$ and $a-SiO_{2}$ particles were embedded in the $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formed at the steel/coating interface during hot dipping. The results clearly show that Al in the liquid Zn bath can reduce the crystalline $_{C-X}MnO.SiO_{2}$ (x>1) oxides but not the amorphous $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides. These oxides remain embedded in the Zn layer or in the inhibition layer, making it possible to apply a Zn or Zn-alloy coating on martensitic steel by hot dipping. The hot dipping process was also found to deteriorate the mechanical properties, independently of the Zn bath composition.

Property of Nickel Silicide with 60 nm and 20 nm Hydrogenated Amorphous Silicon Prepared by Low Temperature Process (60 nm 와 20 nm 두께의 수소화된 비정질 실리콘에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Joung-Ryul;Park, Jong-Sung;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.528-537
    • /
    • 2008
  • 60 nm and 20 nm thick hydrogenated amorphous silicon(a-Si:H) layers were deposited on 200 nm $SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by an e-beam evaporator. Finally, 30 nm-Ni/(60 nm and 20 nm) a-Si:H/200 nm-$SiO_2$/single-Si structures were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 40 sec. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide from the 60 nm a-Si:H substrate showed low sheet resistance from $400^{\circ}C$ which is compatible for low temperature processing. The nickel silicide from 20 nm a-Si:H substrate showed low resistance from $300^{\circ}C$. Through HRXRD analysis, the phase transformation occurred with silicidation temperature without a-Si:H layer thickness dependence. With the result of FE-SEM and TEM, the nickel silicides from 60 nm a-Si:H substrate showed the microstructure of 60 nm-thick silicide layers with the residual silicon regime, while the ones from 20 nm a-Si:H formed 20 nm-thick uniform silicide layers. In case of SPM, the RMS value of nickel silicide layers increased as the silicidation temperature increased. Especially, the nickel silicide from 20 nm a-Si:H substrate showed the lowest RMS value of 0.75 at $300^{\circ}C$.