DOI QR코드

DOI QR Code

Comprehensive Structural Characterization of Commercial Blue Light Emitting Diode by Using High-Angle Annular Dark Filed Scanning Transmission Electron Microscopy and Transmission Electron Microscopy

고각 환형 암시야 주사투과전자현미경기법과 투과전자현미경기법을 이용한 상용 청색 발광다이오드의 종합적인 구조분석

  • Received : 2014.10.06
  • Accepted : 2014.10.20
  • Published : 2015.01.27

Abstract

This study suggested comprehensive structural characterization methods for the commercial blue light emitting diodes(LEDs). By using the Z-contrast intensity profile of Cs-corrected high-angle annular dark field scanning transmission electron microscope(HAADF-STEM) images from a commercial lateral GaN-based blue light emitting diode, we obtained important structural information on the epilayer structure of the LED, which would have been difficult to obtain by conventional analysis. This method was simple but very powerful to obtain structural and chemical information on epi-structures in a nanometer-scale resolution. One of the examples was that we could determine whether the barrier in the multi-quantum well(MQW) was GaN or InGaN. Plan-view TEM observations were performed from the commercial blue LED to characterize the threading dislocations(TDs) and the related V-pit defects. Each TD observed in the region with the total LED epilayer structure including the MQW showed V-pit defects for almost of TDs independent of the TD types: edge-, screw-, mixed TDs. The total TD density from the region with the total LED epilayer structure including the MQW was about $3.6{\times}10^8cm^{-2}$ with a relative ratio of Edge- : Screw- :Mixed-TD portion as 80%: 7%: 13%. However, in the mesa-etched region without the MQW total TD density was about $2.5{\times}10^8cm^{-2}$ with a relative ratio of Edge- : Screw- :Mixed-TD portion of 86%: 5%: 9 %. The higher TD density in the total LED epilayer structure implied new generation of TDs mostly from the MQW region.

Keywords

References

  1. S. Nakamura, M. Senoh, T. Mukai, Jpn. J. Appl. Phys., 32, L8 (1993). https://doi.org/10.1143/JJAP.32.L8
  2. S. Nakamura, M. Senoh, T. Mukai, Appl. Phys. Lett., 62, 2390 (1993). https://doi.org/10.1063/1.109374
  3. E. F. Schubert, Light-Emitting Diodes, Cambridge University Press, Cambridge (2003).
  4. R. C. Tu, C. J. Tun, S. M. Pan, C. C. Chuo, J. K. Sheu, C. E. Tsai, T. C. Wang, G. C. Chi, IEEE Photonic. Tech. L, 15, 1342 (2003). https://doi.org/10.1109/LPT.2003.818240
  5. Y. Y. Zhang, Y. A. Yin, Appl. Phys. Lett., 99, 221103 (2011). https://doi.org/10.1063/1.3653390
  6. W. Lee, J. S. Kwak, Electron. Mater. Lett., 9, 451 (2013). https://doi.org/10.1007/s13391-013-0021-5
  7. A. D. Bykhovski, B. L. Gelmont, M. S. Shur, J. Appl. Phys., 81, 6332 (1997). https://doi.org/10.1063/1.364368
  8. C. H. Jang, J. K. Sheu, C. M. Tsai, S. J. Chang, W. C. Lai, M. L. Lee, T. K. Ko, C. F. Shen, S. C. Shei, IEEE J. Quantum Elect., 46, 513 (2010). https://doi.org/10.1109/JQE.2009.2036269
  9. X. Yu, G. Fan, S. Zheng, B. Ding, T. Zhang, IEEE Photonic. Tech. L, 26, 1132 (2014). https://doi.org/10.1109/LPT.2014.2316546
  10. A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, P. Hinze, Phys. Rev. Lett., 95, 127402 (2005). https://doi.org/10.1103/PhysRevLett.95.127402
  11. T. M. Smeeton, C. J. Humphreys, J. S. Barnard, M. J. Kappers, J. Mater. Sci., 41, 2729 (2006). https://doi.org/10.1007/s10853-006-7876-x
  12. S. J. Pennycook, B. Rafferty, B, P. D. Nellist, Microsc. Microanal., 6, 343 (2000). https://doi.org/10.1017/S1431927602000594
  13. S. J. Pennycook, Ultramicroscopy, 30, 58 (1989). https://doi.org/10.1016/0304-3991(89)90173-3
  14. D. M. Follstaedt, N. A. Missert, D. D. Koleske, C. C. Mitchell, K. C. Cross, Appl. Phys. Lett., 83, 4797 (2003). https://doi.org/10.1063/1.1632540
  15. P. Hartel, H. Rose, C. Dignes, Ultramicroscopy, 63, 93 (1996). https://doi.org/10.1016/0304-3991(96)00020-4