Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.8.491

Development of Ultra-Thin TiO2 Coated WO3 Inverse Opal Photoelectrode for Dye-Sensitized Solar Cells  

Arunachalam, Maheswari (Department of Chemistry, Chonnam National University)
Kwag, Seoui (Gwangju Science Academy For the Gifted)
Lee, Inho (Gwangju Science Academy For the Gifted)
Kim, Chung Soo (Testing Analysis Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Sang-Kwon (Department of Chemistry Education, Chonnam National University)
Kang, Soon Hyung (Department of Chemistry Education, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.29, no.8, 2019 , pp. 491-496 More about this Journal
Abstract
In this study, we prepare pure $WO_3$ inverse opal(IO) film with a thickness of approximately $3{\mu}m$ by electrodeposition, and an ultra-thin $TiO_2$ layer having a thickness of 2 nm is deposited on $WO_3$ IO film by atomic layer deposition. Both sets of photoelectrochemical properties are evaluated after developing dye-sensitized solar cells(DSSCs). In addition, morphological, crystalline and optical properties of the developed films are evaluated through field-emission scanning electron microscopy(FE-SEM), High-resolution transmission electron microscopy(HR-TEM), X-ray diffraction(XRD) and UV/visible/infrared spectrophotometry. In particular, pure $WO_3$ IO based DSSCs show low $V_{OC}$, $J_{SC}$ and fill factor of 0.25 V, $0.89mA/cm^2$ and 18.9 %, achieving an efficiency of 0.04 %, whereas the $TiO_2/WO_3$ IO based DSSCs exhibit $V_{OC}$, $J_{SC}$ and fill factor of 0.57 V, $1.18mA/cm^2$ and 50.1 %, revealing an overall conversion efficiency of 0.34 %, probably attributable to the high dye adsorption and suppressed charge recombination reaction.
Keywords
dye-sensitized solar cell; $WO_3$; atomic layer deposition; $TiO_2$; inverse opal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Ghosh, M. K. Brennaman, T. Uher, M.-R. Ok, E. T. Samulski, L. E. McNeil, T. J. Meyer and R. Lopez, ACS Appl. Mater. Interfaces, 3, 10 (2010).
2 S. Burnside, J. -E. Moser, K. Brooks, M. Gratzel and D. Cahen, J. Phys. Chem. B, 103, 9328 (1999).   DOI
3 H. Zheng, Y. Tachibana and K. Kalantar-zadeh, Langmuir, 26, 19148 (2010).   DOI
4 S. H. Kang, S. -H. Choi, M. -S. Kang, J. -Y. Kim, H. -S. Kim, T. Hyeon and Y. -E. Sung, Adv. Mater., 20, 54 (2008).   DOI
5 Y. O. Kim, S. -H. Yu, K. -S. Ahn, S. K. Lee and S. H. Kang, J. Electroanal. Chem., 752, 25 (2015).   DOI
6 H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider and M. Eich, Opt. Mater. Express, 3, 1007 (2013).   DOI
7 G. Yun, M. Arunachalam and S. H. Kang, J. Phys. Chem. C, 120, 5906 (2016).   DOI
8 F. M. Rajab, J. Miner. Mater. Charact. Eng., 2, 169 (2014).   DOI
9 J. Gong, K. Sumathy, Q. Qiao and Z. Zhou, Renew. Sustainable Energy Rev., 68, 234 (2017).   DOI
10 M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D'Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner and H. J. Snaith, Nano Lett., 11, 438 (2011).   DOI
11 X. Hu and H. Wang, Front. Optoelectronics, 11, 285 (2018).   DOI
12 M. McCune, W. Zhang and Y. Deng, Nano Lett., 12, 3656 (2012).   DOI
13 B. O'Regan and M. Gratzel, Nature, 353, 737 (1991).   DOI
14 A. Yella, H. -W. Lee, H. N. Tsao, C. Yi, S. M. Zakeeruddin and M. Gratzel, Science, 334, 629 (2011).   DOI