• Title/Summary/Keyword: Heterocyclic ligand

Search Result 13, Processing Time 0.021 seconds

The Soft Material Obtained from an Europium (III)-Containing Ionic Liquid

  • Shao, Huifang;Wang, Yige;Li, Dan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.973-976
    • /
    • 2011
  • The addition of organic ligand (${\beta}$-diketone or heterocyclic compound) to the europium (III)-containing ionic liquid resulted in bright luminescent soft materials with the molar ratio of europium/ionic liquid (IL)/ligand being 1:3:1 that exhibit bright red light under UV lamp. The luminescent properties such as emission features and lifetime of $^5D_0$ $Eu^{3+}$ excited level are dependent on the organic ligands. The materials were characterized by FT-IR and luminescence spectroscopy. The data shows that at least parts of the ILs (carboxylic acid) are replaced with ${\beta}$-diketone ligand rather than the formation of europium complex with the molar ratio of $Eu^{3+}$:IL: ligand being 1:3:1, while no ILs could be replaced by the heterocyclic ligand such as Bpy and Phen.

A Two-Dimensional Terrace-Like N-heterocyclic-Pb(II) Coordination Compound: Structure and Photoluminescence Property

  • Ma, Kui-Rong;Zhu, Yu-Lan;Zhang, Yu;Li, Rong-Qing;Cao, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.894-898
    • /
    • 2011
  • The first example of lead compound from $Pb(NO_3)_2$ and $H_3L$ N-heterocyclic ligand $(H_3L\;=\;(HO_2C)_2(C_3N_2)(C_3H_7)CH_2(C_6H_4)(C_6H_3)CO_2H)$, $[Pb_4(L')_4]{\cdot}5H_2O$ 1 (L' = OOC$(C_3H_7)(C_3N_2)CH_2(C_6H_4)(C_6H_3)COO)$, has been obtained under hydrothermal condition by decarboxylation, and characterized by elemental analysis, IR, TGDTA, and single-crystal X-ray diffraction. Compound 1 possesses a rare two-dimensional upper-lower offset terrace-like layer structure. In 1, crystallographic distinct Pb(II) ion adopts five-coordination geometry, and two lattice water molecules occupy the voids between 2-D layers. Results of solid state fluorescence measurement indicate that the emission band 458 nm may be assigned to $\pi^*-n$ and $\pi^*-\pi$ electronic transitions within the aromatic systems of the ligand L', however, the emission bands centred at 555 nm, 600 nm and 719 nm may be derived from phosphorescent emission ($\lambda_{excitation}$ = 390 nm).

Surface Modification of Zinc Oxide Nanorods with Zn-Porphyrin via Metal-Ligand Coordination for Photovoltaic Applications

  • Koo, Jae-Hong;Cho, Jin-Ju;Yang, Jin-Ho;Yoo, Pil-J.;Oh, Kyung-Wha;Park, Ju-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.636-640
    • /
    • 2012
  • We modify ZnO nanorods with Zn-porphyrin to obtain the improved characteristics of energy transfer, which is further investigated for the applicability to photovoltaic devices. A nitrogen heterocyclic ligand containing a thiol group is covalently grafted onto the surface of finely structured ZnO nanorods with a length of 50-250 nm and a diameter of 15-20 nm. Zn-porphyrin is then attached to the ligand molecules by the mechanism of metalligand axial coordination. The resulting energy band diagram suggests that the porphyrin-modified ZnO nanorods might provide an efficient pathway for energy transfer upon being applied to photovoltaic devices.

Photoluminescent Properties of Eu(III) in the Composite Heterocyclic Ligands/Crown Ether Systems

  • Liu, Hong Guo;Jang, Ki-Wan;Feng, Xu Sheng;Kim, Chang-Dae;Yoo, Young-Jae;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1969-1974
    • /
    • 2005
  • Composite systems of $Eu(phen)_2Cl_3{(H_2O)}_2$, Eu(DN-bpy)$(phen)Cl_3{(H_2O)}_2$ and Eu(DB-bpy)$(phen)Cl_3{(H_2O)}_2$ (DNbpy: $4,4^\prime$-Dinonyl-$2,2^\prime$-dipyridyl; DB-bpy: $4,4^\prime$-Di-tert-butyl-$2,2^\prime$-dipyridyl) with crown ethers of Benzo-15-crown-5 (B15C5), Benzo-18-crown-6 (B18C6), 18-crown-6 (18C6), Dibenzo-18-crown-6 (DB18C6) and Dibenzo-24-crown-8 (DB24C8) were fabricated successfully and characterized by using photoluminescent spectroscopy and luminescent lifetime measurements. All composites formed show high luminescence mainly in red region. It was found that the heterocyclic ligands such as phen, DN-bpy and DB-bpy as well as the crown ethers have great influences on the photoluminescent properties of $Eu^{3+}$ ion. The environment around $Eu^{3+}$ ion in the composite systems changes greatly,presumably the variation of the first coordination sphere. The $Eu^{3+}$ ion occupies higher symmetrical environment and in more than one kind of symmetrical site in the composite systems studied in this work.

STRUCTURAL ANALYSIS OF COPPER PHTHALOCYANINE THIN FILMS FABRICATED BY PLASMA-ACTIVATED EVAPORATION

  • Kim, Jun-Tae;Jang, Seong-Soo;Lee, Soon-Chil;Lee, Won-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.851-856
    • /
    • 1996
  • Copper Phthalocyanine (CuPc) thin films were fabricated on the silicon wafers by plasma activated evaporation method and structural analysis were carried out with various spectroscopies. The CuPc films had dense and smooth morphology and they also showed good mechanical properties and chemical resistance. The main molecular structure of the CuPc, which is the conjugated aromatic heterocyclic ring structure, was maintained even in the plasma process. However, metal-ligand (Cu-N) bands were deformed by the plasma process and the structure became amorphous especially at higher process pressures. Oxygen impurities were incorporated in the film and carboxyl functional groups were formed at the peripheral benzene ring. The structure and morphology of the films were dependent on the process pressure but relatively irrespective of the RF power.

  • PDF

Manipulation of Absorption Maxima by Controlling Oxidation Potentials in Bis(tridentate) Ru(II) N-Heterocyclic Carbene Complexes

  • Kim, Hyeong-Mook;Jeong, Daero;Noh, Hee Chang;Kang, Youn K.;Chung, Young Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.448-456
    • /
    • 2014
  • A series of seven Ru(II) complexes bearing NHC ligands have been synthesized. The electronic structures of these complexes were analysed by spectroscopic and electrochemical methods and further examined by theoretical calculations. Data show that absorption maxima are dependent on the HOMO level rather than the HOMO-LUMO gaps.

Synthesis, Spectroscopic Studies of Binuclear Ruthenium(II) Carbonyl Thiosemicarba-zone Complexes Containing PPh3/AsPh3 as Co-ligands: DNA Binding/Cleavage

  • Sampath, K.;Sathiyaraj, S.;Jayabalakrishnan, C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.367-373
    • /
    • 2013
  • The ruthenium(II) ferrocenyl heterocyclic thiosemicarbazone complexes of the type $[RuCl(CO)(EPh_3)]_2L$ (where E = P/As; L = binucleating monobasic tridendate thiosemicarbazone ligand) have been investigated. Strutural features were determined by analytical and spectral techniques. Binding of these complexes with CT-DNA by absorption spectral study indicates that the ruthenium(II) complexes form adducts with DNA and has intrinsic binding constant in the range of $3.3{\times}10^4-1.2{\times}10^5M^{-1}$. The complexes exhibit a remarkable DNA cleavage activity with CT-DNA in the presence of hydrogen oxide and the cleavage activity depends on dosage.

Highly Efficient Red Emissive Heteroleptic Cyclometalated Iridium(III) Complexes Bearing Two Substituted 2-Phenylquinoxaline and One 2-Pyrazinecarboxylic Acid

  • Sengottuvelan, Nallathambi;Yun, Seong-Jae;Kim, Dae-Young;Hwang, In-Hye;Kang, Sung Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.167-173
    • /
    • 2013
  • A series of highly efficient red phosphorescent heteroleptic iridium(III) complexes 1-6 containing two cyclometalating 2-(2,4-substitued phenyl)quinoxaline ligands and one chromophoric ancillary ligand were synthesized: (pqx)$_2Ir$(mprz) (1), (dmpqx)$_2Ir$(mprz) (2), (dfpqx)$_2Ir$(mprz) (3), (pqx)$_2Ir$(prz) (4), (dmpqx)$_2Ir$(prz) (5), (dfpqx)$_2Ir$(prz) (6), where pqx = 2-phenylquinoxaline, dfpqx = 2-(2,4-diflourophenyl)quinoxaline, dmpqx = 2-(2,4-dimethoxyphenyl)quinoxaline, prz = 2-pyrazinecarboxylate and mprz = 5-methyl-2-pyrazinecarboxylate. The absorption, emission, electrochemical and thermal properties of the complexes were evaluated for potential applications to organic light-emitting diodes (OLEDs). The structure of complex 2 was also determined by single-crystal X-ray diffraction analysis. Complex 2 exhibited distorted octahedral geometry around the iridium metal ion, for which 2-(2,4-dimethoxyphenyl)quinoxaline N atoms and C atoms of orthometalated phenyl groups are located at the mutual trans and cis-positions, respectively. The emission spectra of the complexes are governed largely by the nature of the cyclometalating ligand, and the phosphorescent peak wavelengths can be tuned from 588 to 630 nm with high quantum efficiencies of 0.64 to 0.86. Cyclic voltammetry revealed irreversible metal-centered oxidation with potentials in the range of 1.16 to 1.89 V as well as two quasi-reversible reduction waves with potentials ranging from -0.94 to -1.54 V due to the sequential addition of two electrons to the more electron-accepting heterocyclic portion of two distinctive cyclometalated C^N ligands.

Structure-Activity Relationship and Functional Evaluation of Cannabinoid Type-1 Receptor

  • Shujie Wang;Xinru Tian;Suresh Paudel;Sungho Ghil;Choon-Gon Jang;Kyeong-Man Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.442-450
    • /
    • 2024
  • The type-1 cannabinoid receptor (CB1R) is a potential therapeutic target in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Owing to their structural diversity, it is not easy to derive general structure-activity relationships (SARs) for CB1R ligands. In this study, CB1R ligands were classified into six structural families, and the corresponding SAR was determined for their affinities for CB1R. In addition, we determined their functional activities for the activation of extracellular signal-regulated kinases (ERKs). Among derivatives of indol-3-yl-methanone, the highest ligand affinity was observed when a pentyl and a naphthalenyl group were attached to the N1 position of the indole ring and the carbon site of the methanone moiety, respectively. In the case of adamantane indazole-3-carboxamide derivatives, the presence of fluorine in the pentyl group, the substituent at the N1 position of the indazole ring, strongly increased the affinity for CB1R. For (naphthalen-1-yl) methanone derivatives, the presence of 4-alkoxynaphthalene in the methanone moiety was more beneficial for the affinity to CB1R than that of a heterocyclic ring. The functional activities of the tested compounds, evaluated through ERK assay, were correlated with their affinity for CB1R, suggesting their agonistic nature. In conclusion, this study provides valuable insight for designing novel ligands for CB1R, which can be used to control psychiatric disorders and drug abuse.