DOI QR코드

DOI QR Code

Highly Efficient Red Emissive Heteroleptic Cyclometalated Iridium(III) Complexes Bearing Two Substituted 2-Phenylquinoxaline and One 2-Pyrazinecarboxylic Acid

  • Sengottuvelan, Nallathambi (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Yun, Seong-Jae (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Kim, Dae-Young (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Hwang, In-Hye (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Kang, Sung Kwon (Department of Chemistry, Chungnam National University) ;
  • Kim, Young-Inn (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University)
  • Received : 2012.09.20
  • Accepted : 2012.10.25
  • Published : 2013.01.20

Abstract

A series of highly efficient red phosphorescent heteroleptic iridium(III) complexes 1-6 containing two cyclometalating 2-(2,4-substitued phenyl)quinoxaline ligands and one chromophoric ancillary ligand were synthesized: (pqx)$_2Ir$(mprz) (1), (dmpqx)$_2Ir$(mprz) (2), (dfpqx)$_2Ir$(mprz) (3), (pqx)$_2Ir$(prz) (4), (dmpqx)$_2Ir$(prz) (5), (dfpqx)$_2Ir$(prz) (6), where pqx = 2-phenylquinoxaline, dfpqx = 2-(2,4-diflourophenyl)quinoxaline, dmpqx = 2-(2,4-dimethoxyphenyl)quinoxaline, prz = 2-pyrazinecarboxylate and mprz = 5-methyl-2-pyrazinecarboxylate. The absorption, emission, electrochemical and thermal properties of the complexes were evaluated for potential applications to organic light-emitting diodes (OLEDs). The structure of complex 2 was also determined by single-crystal X-ray diffraction analysis. Complex 2 exhibited distorted octahedral geometry around the iridium metal ion, for which 2-(2,4-dimethoxyphenyl)quinoxaline N atoms and C atoms of orthometalated phenyl groups are located at the mutual trans and cis-positions, respectively. The emission spectra of the complexes are governed largely by the nature of the cyclometalating ligand, and the phosphorescent peak wavelengths can be tuned from 588 to 630 nm with high quantum efficiencies of 0.64 to 0.86. Cyclic voltammetry revealed irreversible metal-centered oxidation with potentials in the range of 1.16 to 1.89 V as well as two quasi-reversible reduction waves with potentials ranging from -0.94 to -1.54 V due to the sequential addition of two electrons to the more electron-accepting heterocyclic portion of two distinctive cyclometalated C^N ligands.

Keywords

References

  1. Chi, Y.; Chou, P.-T. Chem. Soc. Rev. 2010, 39, 638. https://doi.org/10.1039/b916237b
  2. Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; King, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926. https://doi.org/10.1002/adma.201003128
  3. Ulbricht, C.; Beyer, B.; Friebe, C.; Winter, A.; Schubert, U. S. Adv. Mater. 2009, 21, 4418. https://doi.org/10.1002/adma.200803537
  4. Wiegmann, B.; Jones, P. G.; Wagenblast, G.; Lennartz, C.; Munster, I.; Metz, S.; Kowalsky, W.; Johannes, H.-H. Organometallics, 2012, 31, 5223. https://doi.org/10.1021/om300458f
  5. Tavasli, M.; Moore, T. N.; Zheng, Y.; Bryce, M. R.; Fox, M. A.; Griffiths, G. C.; Jankus, V. I.; Al-Attar, H. A.; Monkman, A. P. J. Mater. Chem. 2012, 22, 6419. https://doi.org/10.1039/c2jm15049b
  6. Bera, N.; Cumpustey, N.; Burn, P. L.; Samuel, I. D. W. Adv. Funct. Mater. 2007, 17, 1149. https://doi.org/10.1002/adfm.200600118
  7. Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; Petrov, V. A.; Wang, Y. Chem. Commun. 2001, 1494.
  8. Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2001, 90, 5048. https://doi.org/10.1063/1.1409582
  9. Sengottuvelan, N.; Seo, H.-J.; Kang, S. K.; Kim, Y.-I. Bull. Korean Chem. Soc. 2010, 31, 2309. https://doi.org/10.5012/bkcs.2010.31.8.2309
  10. Sengottuvelan, N.; Yun, S.-J.; Kang, S. K.; Kim, Y.-I. Bull. Korean Chem. Soc. 2011, 32, 4321. https://doi.org/10.5012/bkcs.2011.32.12.4321
  11. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
  12. Graces, F. O.; King, K. A.; Watts, R. J. Inorg. Chem. 1988, 27, 3464. https://doi.org/10.1021/ic00293a008
  13. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. https://doi.org/10.1021/ja003693s
  14. Vicente, J.; Arcas, A.; Bautista, D.; Arllano, M. C. R. J. Organomet. Chem. 2002, 663, 164. https://doi.org/10.1016/S0022-328X(02)01729-1
  15. Allen, F. H.; Davies, J. E.; Galloy, J. J.; Johnson, O.; Kennard, O.; Macrae, C. F.; Mitchell, E. M.; Mitchell, G. F.; Smith, J. M.; Watson, D. G. J. Chem. Inf. Comput. Sci. 1991, 31, 187. https://doi.org/10.1021/ci00002a004
  16. Wilde, A. P.; King, K. A.; Watts, R. J. J. Phys. Chem. 1991, 95, 629. https://doi.org/10.1021/j100155a026
  17. You, Y.; Park, S. Y. J. Am. Chem. Soc. 2005, 127, 12438. https://doi.org/10.1021/ja052880t
  18. You, Y.; Kim, K. S.; Ahn, T. K.; Kim, D.; Park, S. Y. Phys. Chem. C 2007, 111, 4052. https://doi.org/10.1021/jp0702550
  19. Hwang, F. M.; Chen, H.; Chen, P.; Liu, C.; Chi, Y.; Shu, C.; Wu, F.; Chou, P.; Peng, S.; Lee, G. Inorg. Chem. 2005, 44, 1344. https://doi.org/10.1021/ic0489443
  20. Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Uenno, K. J. Am. Chem. Soc. 2003, 125, 12971. https://doi.org/10.1021/ja034732d
  21. Ding, J.; Gao, J.; Fu, Q.; Cheng, Y.; Ma, D.; Wang, L. Syn. Met. 2005, 155, 539. https://doi.org/10.1016/j.synthmet.2005.08.034
  22. Lowry, M. S.; Bernhard, S. Chem. Eur. J. 2006, 12, 7970. https://doi.org/10.1002/chem.200600618
  23. Dragonetti, C.; Falciola, L.; Mussini, P.; Righetto, S.; Roberto, D.; Ugo, R.; Valore, A. Inorg. Chem. 2007, 46, 8533. https://doi.org/10.1021/ic700414z
  24. Pu, B.; Wang, L.; Wa, H. B.; Yang, W.; Zhang, Y.; Liu, R. S.; Sun, M. L.; Peng, J.; Cao, P. Chem. Eur. J. 2007, 13, 7432. https://doi.org/10.1002/chem.200601811
  25. Ma, A.-F.; Seo, H.-J.; Jin, S.-H.; Yoon, U. C.; Hyun, M. H.; Kang, S. K.; Kim, Y.-I. Bull. Korean Chem. Soc. 2009, 30, 2754. https://doi.org/10.5012/bkcs.2009.30.11.2754

Cited by

  1. ′]iridium(III) vol.69, pp.8, 2013, https://doi.org/10.1107/S1600536813018394
  2. Structural characteristics of iridium dual-emitter organometallic compound vol.29, pp.23, 2014, https://doi.org/10.1557/jmr.2014.337
  3. Orange-Yellow Phosphorescent Iridium(III) Complex for Solution-processed Organic Light-Emitting Diodes: Structural, Optical and Electroluminescent Properties of Bis(2-phenylbenzothiazole)[2-(2-hydroxyphenyl)benzothiazole]iridium(III) vol.38, pp.6, 2017, https://doi.org/10.1002/bkcs.11144
  4. Photophysical Properties of Highly Efficient Blue-Green Emitting Cationic Iridium (III) Complexes Containing Two 2-Phenylbenzothiazole Ligands and One Diphosphine Ligand vol.35, pp.11, 2013, https://doi.org/10.5012/bkcs.2014.35.11.3199
  5. Polysubstituted Ligand Framework for Color Tuning Phosphorescent Iridium(III) Complexes vol.60, pp.20, 2013, https://doi.org/10.1021/acs.inorgchem.1c02121