Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.2.636

Surface Modification of Zinc Oxide Nanorods with Zn-Porphyrin via Metal-Ligand Coordination for Photovoltaic Applications  

Koo, Jae-Hong (School of Chemical Engineering and Materials Science, Chung-Ang University)
Cho, Jin-Ju (School of Chemical Engineering and Materials Science, Chung-Ang University)
Yang, Jin-Ho (School of Chemical Engineering and Materials Science, Chung-Ang University)
Yoo, Pil-J. (School of Chemical Engineering, Sungkyunkwan University)
Oh, Kyung-Wha (Department of Home Economics Education, Chung-Ang University)
Park, Ju-Hyun (School of Chemical Engineering and Materials Science, Chung-Ang University)
Publication Information
Abstract
We modify ZnO nanorods with Zn-porphyrin to obtain the improved characteristics of energy transfer, which is further investigated for the applicability to photovoltaic devices. A nitrogen heterocyclic ligand containing a thiol group is covalently grafted onto the surface of finely structured ZnO nanorods with a length of 50-250 nm and a diameter of 15-20 nm. Zn-porphyrin is then attached to the ligand molecules by the mechanism of metalligand axial coordination. The resulting energy band diagram suggests that the porphyrin-modified ZnO nanorods might provide an efficient pathway for energy transfer upon being applied to photovoltaic devices.
Keywords
Zinc oxide; Nanorods; Porphyrin; Surface modification; Solar cells;
Citations & Related Records
연도 인용수 순위
1 Barea, E. M.; Caballero, R.; Lopez-Arroyo, L.; Guerrero, A.; de la Cruz, P.; Langa, F.; Bisquert, J. Chem. Phys. Chem. 2011, 12, 961.   DOI   ScienceOn
2 Rensmo, H.; Westermark, K.; Södergren, S.; Kohle, O.; Persson, P.; Lunell, S.; Siegbahn, H. J. Chem. Phys. 1999, 111, 2744.   DOI
3 Robertson, N. Angew. Chem. Int. 2006, 45, 2338.   DOI   ScienceOn
4 Gratzel, M. Acc. Chem. Res. 2009, 42, 1788.   DOI   ScienceOn
5 Ohlsson, J.; Wolpher, H.; Hagfeldt, A.; Grennberg, H.; J. Photochem. Photobiol. A 2002, 148, 41.   DOI   ScienceOn
6 Bi, D.; Wu, F.; Yue, W.; Guo, Y.; Shen, W.; Peng, R.; Wu, H.; Wang, X.; Wang, M. J. Phys. Chem. C 2010, 114, 13846.   DOI   ScienceOn
7 Said, A. J.; Poize, G.; Martini, C.; Ferry, D.; Marine, W.; Giorgio, S.; Fages, F.; Hocq, J.; Bouclé, J.; Nelson, J.; Durrant, J. R.; Ackermann, J. J. Phys. Chem. C 2010, 114, 11273.   DOI   ScienceOn
8 Singh, J.; Im, J.; Whitten, J. E.; Soares, J. W.; Steeves, D. M. Chem. Phys. Lett. 2010, 497, 196.   DOI   ScienceOn
9 Rochford, J.; Chu, D.; Hagfeldt, A.; Galoppini, E. J. Am. Chem. Soc. 2007, 129, 4655.   DOI   ScienceOn
10 Subbaiyan, N. K.; Wijesinghe, C. A.; D'Souza, F. J. Am. Chem. Soc. 2009, 131, 14646.   DOI   ScienceOn
11 Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem. Int. 2002, 41, 1188.   DOI   ScienceOn
12 Zhang, J.; Liu, H.; Wang, Z.; Ming, N.; Li, Z.; Biris, A. S. Adv. Funct. Mater. 2007, 17, 3897.   DOI   ScienceOn
13 Jung, S. H.; Oh, E.; Lee, K. H.; Jeong, S. H.; Yang, Y.; Park, C. G. Bull. Korean. Chem. Soc. 2007, 28, 1457.   DOI   ScienceOn
14 Sun, G.; Cao, M.; Wang, Y.; Hu, C.; Liu, Y.; Ren, L.; Pu, Z. Mater. Lett. 2006, 60, 2777.   DOI   ScienceOn
15 Singh, J.; Im, J.; Whitten, J. E. Langmuir 2009, 25, 9947.   DOI   ScienceOn
16 Sadik, P. W.; Pearton, S. J.; Norton, D. P.; Lambers, E.; Ren, F. J. Appl. Phys. 2007, 101, 104514.   DOI   ScienceOn
17 Dvorak, J.; Jirsak, T.; Rodriguez, J. A. Surf. Sci. 2001, 479, 155.   DOI   ScienceOn
18 Singh, J.; Whitten, J. E. J. Phys. Chem. 2008, 112, 19088.
19 Garcia, M. A.; Merino, J. M.; Fernandez, E.; Quesada, A.; de la Venta, F.; Ruiz González, M. L.; Castro, G. R.; Crespo, P.; Llopis, J.; Gonzalez-Calbet, J. M.; Hernando, A. Nano Lett. 2007, 7, 14894.
20 Tokuhisa, H.; Hammond, P. T. Adv. Funct. Mater. 2003, 13, 831.   DOI   ScienceOn