DOI QR코드

DOI QR Code

A Two-Dimensional Terrace-Like N-heterocyclic-Pb(II) Coordination Compound: Structure and Photoluminescence Property

  • Ma, Kui-Rong (Jiangsu Key Laboratory for Chemistry of Low-dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University) ;
  • Zhu, Yu-Lan (Jiangsu Key Laboratory for Chemistry of Low-dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University) ;
  • Zhang, Yu (Jiangsu Key Laboratory for Chemistry of Low-dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University) ;
  • Li, Rong-Qing (Jiangsu Key Laboratory for Chemistry of Low-dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University) ;
  • Cao, Li (Jiangsu Key Laboratory for Chemistry of Low-dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University)
  • Received : 2010.12.06
  • Accepted : 2011.01.07
  • Published : 2011.03.20

Abstract

The first example of lead compound from $Pb(NO_3)_2$ and $H_3L$ N-heterocyclic ligand $(H_3L\;=\;(HO_2C)_2(C_3N_2)(C_3H_7)CH_2(C_6H_4)(C_6H_3)CO_2H)$, $[Pb_4(L')_4]{\cdot}5H_2O$ 1 (L' = OOC$(C_3H_7)(C_3N_2)CH_2(C_6H_4)(C_6H_3)COO)$, has been obtained under hydrothermal condition by decarboxylation, and characterized by elemental analysis, IR, TGDTA, and single-crystal X-ray diffraction. Compound 1 possesses a rare two-dimensional upper-lower offset terrace-like layer structure. In 1, crystallographic distinct Pb(II) ion adopts five-coordination geometry, and two lattice water molecules occupy the voids between 2-D layers. Results of solid state fluorescence measurement indicate that the emission band 458 nm may be assigned to $\pi^*-n$ and $\pi^*-\pi$ electronic transitions within the aromatic systems of the ligand L', however, the emission bands centred at 555 nm, 600 nm and 719 nm may be derived from phosphorescent emission ($\lambda_{excitation}$ = 390 nm).

Keywords

References

  1. Fan, S. R.; Zhu, L. G. Inorg. Chem. 2007, 46, 6785. https://doi.org/10.1021/ic700611e
  2. Ma, K. R.; Zhang, D. J.; Zhu, Y. L. Aust. J. Chem. 2010, 63, 452. https://doi.org/10.1071/CH09382
  3. Yang, J.; Ma, J. F.; Liu, Y. Y.; Ma, J. C.; Batten, S. R. Inorg. Chem.2007, 46, 6542. https://doi.org/10.1021/ic700613c
  4. Chen, S. C.; Zhang, Z. H.; Chen, Q.; Gao, H. B.; Liu, Q.; He, M.;Du, Y. M. Inorg. Chem. Commu. 2009, 12, 835. https://doi.org/10.1016/j.inoche.2009.06.029
  5. Ma, K. R.; Xu, J. N.; Wang, L.; Shi, J.; Wang, Y.; Ha, J.; Ning, D.K.; Fan, Y.; Song, T. Y. Chem. J. Chinese U. 2007, 28, 1434.
  6. Zhang, K. L.; Pan, Z. C.; Chang, Y.; Liu, W. L.; Ng, S. W. Mater. Lett. 2009, 63, 2136. https://doi.org/10.1016/j.matlet.2009.05.040
  7. Zhao, Y. H.; Xu, H. B.; Shao, K. Z.; Xing, Y.; Su, Z. M.; Ma, J. F.Cryst. Growth Des. 2007, 7, 513. https://doi.org/10.1021/cg060535p
  8. Zhu, X. D.; Li, X. J.; Liu, Q. Y.; Lv, J.; Guo, Z. G.; He, J. R.; Li, Y.F.; Cao, R. J. Solid State Chem. 2007, 180, 2386. https://doi.org/10.1016/j.jssc.2007.06.010
  9. Zhang, K. L.; Zhou, F.; Wub, R.; Yang, B.; Ng, S. W. Inorg. Chim. Acta. 2009, 362, 4255. https://doi.org/10.1016/j.ica.2009.05.059
  10. Zhang, K. L.; Liang, W.; Chang, Y.; Yuan, L. M.; Ng, S. W. Polyhedron 2009, 28, 647. https://doi.org/10.1016/j.poly.2008.10.074
  11. Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Zhong, M. J. Fluorine Chem. 2000, 106, 189. https://doi.org/10.1016/S0022-1139(00)00328-6
  12. Shimoni-Livny, L.; Glusker, J. P.; Bock, C. W. Inorg. Chem. 1998,37, 1853. https://doi.org/10.1021/ic970909r
  13. Allen, F. H. Acta Crystallogr. Sect. B: Struct. Sci. 2002, 58, 380. https://doi.org/10.1107/S0108768102003890
  14. Spek, A. L. J. Appl. Cryst. 2003, 36, 7. https://doi.org/10.1107/S0021889802022112
  15. Kong, D. Y.; Clearfield, A. Cryst. Growth Des. 2005, 5, 1263. https://doi.org/10.1021/cg050015e