• Title/Summary/Keyword: Hermitian

Search Result 172, Processing Time 0.035 seconds

Performance Improvement of WCDMA Downlink Systems Using Space Time Block Coding (STBC를 이용한 WCDMA 순방향 링크 시스템의 성능개선)

  • 박정숙;박중후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.423-428
    • /
    • 2004
  • High-data rate and high speed communication techniques are required for wireless mobile communication systems to provide multimedia services. A multiple antenna technology may be used to meet this demand. In this paper, a method for performance improvement of a WCDMA downlink system using space time block coding is proposed in quasi-static Rayleigh fading channels. The proposed receiver uses the cross correlation matrix obtained by each finger corresponding to multi paths. To obtain maximum diversity gain, the inverse of cross correlation matrix and the Hermitian matrix of the channel matrix for each path arc computed, and then applied to received signals. Various simulation results show that the proposed receiver outperforms a conventional receiver in Rayleigh fading channels.

Improved Curved Beam Theory for Vibration and Deflection Analyses (진동 및 처짐해석을 위한 개선된 곡선보이론)

  • Kim, Nam-Il;Choi, Jung-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.123-132
    • /
    • 2010
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the displacement field is expressed by introducing displacement parameters defined at the centroid and shear center axes, respectively. Next the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are rigorously derived by degenerating the energies of the elastic continuum to those of curved beam. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by centroid formulation, previous research and ABAQUS's shell elements.

  • PDF

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

POSITIVE SOLUTIONS FOR A NONLINEAR MATRIX EQUATION USING FIXED POINT RESULTS IN EXTENDED BRANCIARI b-DISTANCE SPACES

  • Reena, Jain;Hemant Kumar, Nashine;J.K., Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.709-730
    • /
    • 2022
  • We consider the nonlinear matrix equation (NMEs) of the form 𝓤 = 𝓠 + Σki=1 𝓐*iℏ(𝓤)𝓐i, where 𝓠 is n × n Hermitian positive definite matrices (HPDS), 𝓐1, 𝓐2, . . . , 𝓐m are n × n matrices, and ~ is a nonlinear self-mappings of the set of all Hermitian matrices which are continuous in the trace norm. We discuss a sufficient condition ensuring the existence of a unique positive definite solution of a given NME and demonstrate this sufficient condition for a NME 𝓤 = 𝓠 + 𝓐*1(𝓤2/900)𝓐1 + 𝓐*2(𝓤2/900)𝓐2 + 𝓐*3(𝓤2/900)𝓐3. In order to do this, we define 𝓕𝓖w-contractive conditions and derive fixed points results based on aforesaid contractive condition for a mapping in extended Branciari b-metric distance followed by two suitable examples. In addition, we introduce weak well-posed property, weak limit shadowing property and generalized Ulam-Hyers stability in the underlying space and related results.

ON LOCALLY B*- EQUIV ALENT ALGEBRAS

  • Kang, Soon-Ja
    • Honam Mathematical Journal
    • /
    • v.4 no.1
    • /
    • pp.167-172
    • /
    • 1982
  • Let A be a Banach $^{\ast}$-algebra and C(t) be a closed $^{\ast}$-subalgebra of A gengerated by $t{\in}A$. A is locally $B^{\ast}$-equivalent [$B^{\ast}$-equivalent] if C(t) [A] for every hermitian element t is $^{\ast}$-isomorphic to some $B^{\ast}$-algebra. It was proved that the locally $B^{\ast}$-equivalent algebras with some conditions is $B^{\ast}$-equivalent by B. A. Barnes. In this paper, we obtain the some conditions for a locally $B^{\ast}$-equivalent algebra to be $B^{\ast}$-equivalent.

  • PDF

A FAMILY OF CHARACTERISTIC CONNECTIONS

  • Kim, Hwajeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.843-852
    • /
    • 2013
  • The characteristic connection is a good substitute for Levi-Civita connection in studying non-integrable geometries. In this paper we consider the homogeneous space $U(3)/(U(1){\times}U(1){\times}U(1))$ with a one-parameter family of Hermitian structures. We prove that the one-parameter family of Hermtian structures admit a characteristic connection. We also compute the torsion of the characteristic connecitons.

H-SLANT SUBMERSIONS

  • Park, Kwang-Soon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.329-338
    • /
    • 2012
  • In this paper, we define the almost h-slant submersion and the h-slant submersion which may be the extended version of the slant submersion [11]. And then we obtain some theorems which come from the slant submersion's cases. Finally, we construct some examples for the almost h-slant submersions and the h-slant submersions.

QUASI CONTACT METRIC MANIFOLDS WITH KILLING CHARACTERISTIC VECTOR FIELDS

  • Bae, Jihong;Jang, Yeongjae;Park, JeongHyeong;Sekigawa, Kouei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1299-1306
    • /
    • 2020
  • An almost contact metric manifold is called a quasi contact metric manifold if the corresponding almost Hermitian cone is a quasi Kähler manifold, which was introduced by Y. Tashiro [9] as a contact O*-manifold. In this paper, we show that a quasi contact metric manifold with Killing characteristic vector field is a K-contact manifold. This provides an extension of the definition of K-contact manifold.

COMPOUND-COMMUTING ADDITIVE MAPS ON MATRIX SPACES

  • Chooi, Wai Leong
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.83-104
    • /
    • 2011
  • In this note, compound-commuting additive maps on matrix spaces are studied. We show that compound-commuting additive maps send rank one matrices to matrices of rank less than or equal to one. By using the structural results of rank-one nonincreasing additive maps, we characterize compound-commuting additive maps on four types of matrices: triangular matrices, square matrices, symmetric matrices and Hermitian matrices.