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COMPOUND-COMMUTING ADDITIVE MAPS
ON MATRIX SPACES

‘War LEonGg CHOOI

ABSTRACT. In this note, compound-commuting additive maps on matrix
spaces are studied. We show that compound-commuting additive maps
send rank one matrices to matrices of rank less than or equal to one.
By using the structural results of rank-one nonincreasing additive maps,
we characterize compound-commuting additive maps on four types of
matrices: triangular matrices, square matrices, symmetric matrices and
Hermitian matrices.

1. Introduction

Let M; and M5 be matrix spaces over the same field. Let ® be a matrix
function such that ®(A) € M; whenever A € M, for i = 1,2. We say that
amap ¢ : My — My is ®-commuting if (1 o ®)(A) = (P o Y)(A) for all
A € M. In 1982, Sinkhorn [13] first studied ®-commuting linear maps on
n-square complex matrices with ®(A) = adjA, where adjA, the adjugate of A,
is the matrix whose (4, j)-th entry is the cofactor of the row j and column 4
of A. By using the classical theorem of Frobenius [6] concerning determinant
linear preservers, he gave a general form of adjugate-commuting linear maps
on n-square complex matrices and showed that if n > 3, then the map is of the
form

A APAP™Y or A~ APA'P7L,

where A € C with A»~2 = 1, P is an invertible n-square complex matrix, and
A? denotes the transpose of A. This result was generalized by Chan et al. in
[2] to arbitrary infinite fields based on the structural results of linear maps
preserving invertibility. In the same paper, linear maps on the spaces of square
matrices and symmetric matrices that commute with the exponential function,
i.e., ®(A) = e?, were also considered. Later on, Chan and Lim [1] characterized
linear maps on square matrices that commute with the k-th power function,
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i.e., ®(A) = A* for some fixed positive integer k. More recently, by relaxing
the linearity assumption, some researchers considered ®-commuting additive
maps. For instance, adjugate-commuting additive maps were studied on the
space of complex Hermitian matrices in [14], square matrices and symmetric
matrices in [15], and triangular matrices in [15, 3|, respectively. We refer the
reader to [12, Chapter 9] and [17, Chapter 10] for more information.

Let F be a field and let M,,, ,,(IF) denote the linear space of m x n rectangular
matrices over F. We write M, ,,(F) as M,,(F). If A € M,,(F), then the (n—1)-
th compound matriz, or simply compound matriz of A, denoted by C,,_1(A), is
the n-square matrix whose entries are

Cnfl(A)ij = det(A[n—|— 1 —z|n—|— 1 —]])

with 1 < 4,j < n, where A[i|j] is the (n —1)-square submatrix of A obtained by
excluding its i-th row and j-th column. In this note, we study ®-commuting ad-
ditive maps in the context of ®(A) = C,,—1(A4), and call such a map compound-
commuting. Nevertheless, to our knowledge, compound-commuting additive
maps on matrix spaces have not been studied yet. We show, in Lemma 2.5,
that every nonzero compound-commuting additive map is rank-one nonincreas-
ing, i.e., the map sends rank one matrices to matrices of rank less than or equal
to one. By using the structural results of rank-one nonincreasing additive maps
on the space of block triangular matrices in [3], symmetric matrices in [8, 7],
and Hermitian matrices in [9, 10, 11], respectively, we characterize compound-
commuting additive maps on the spaces of square matrices, triangular matrices
and symmetric matrices over arbitrary fields, and on the space of Hermitian
matrices over a field with proper involution. We will see in Theorem 2.8 that
the classification of compound-commuting additive maps on triangular matri-
ces is quite different and essentially more complicated than the corresponding
theorems on spaces of square matrices, symmetric matrices, and Hermitian
matrices.

We introduce some notation that will be needed in our discussion. Through-
out this note, unless otherwise specified, we assume F is an arbitrary field, and
m and n are positive integers with n < m. Let k,n1,...,ng be positive integers
satisfying ny + -+ + ng = n. By Tp, ... n, (F), we designate the subalgebra of
M., (F) consisting of block matrices (A;;) of the form

A A - Ay

0 Ay -+ Ay

0 0 - A
with A;; € My, 5, (F) for every 1 < i < j < k. We shall call such an algebra
Toa....mn () a block triangular matriz algebra. In particular, when n;, = 1

for all 7, then it constitutes the algebra of n-square triangular matrices and
is abbreviated to 7,(F), and Tn, . n,(F) = M, (F) when k£ = 1. For each
block triangular matrix algebra Ty, ., (F), we associate a chain of nonnegative
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integers 0 = §p < 01 < -+ < §p—1 < O = n with §; = ny + --- + n; for each
i=1,...,k. Let ~ : F — F be a field involution (i.e., a +b = a + b, ab = ba,
and @ = a for every a,b € F). A matrix A € M,,(F) is symmetric if A* = A,
and is called a Hermitian matriz on the involution ~ of F, or simply Hermitian,
it A% = A" = A, where ~ is applied on A entrywise. Let S, (F) and H,(F)
denote, respectively, the set of all n-square symmetric matrices and n-square
Hermitian matrices over F. Note that H,(F) = S, (F) if the involution ~ is
identity. We will use E;; and Fj; to designate the matrix units of M, (F)
and M, (IF), respectively, whose (4, j)-th entry is one and the others are zero.
We denote by I, the n-square identity matrix, and Z, the diagonal matrix
S (1) E;. Given a matrix A = (a;j) € My, n(F), by rankA4, A% and
A~ we denote, respectively, the rank of A, the m x n matrix whose (,j)-th
entry is o(a;;) with o a field homomorphism on F, and the n X m matrix whose
(i,7)-th entry i @m41—j nt1—i. 1t is easily verified that A~ = J,, A'J,, where
Ip = En + En71,2 + -+ B

2. Results

In this section we characterize compound-commuting additive maps on the
space of square matrices, triangular matrices, symmetric matrices, and Her-
mitian matrices, respectively. For the construction of our main results, we
establish the following lemmas.

We start with the following interesting result proved by Fosner and Semrl
in [5].

Lemma 2.1 ([5, Lemma 2.1]). Let F be a field, and let m and n be posi-
tive integers with m > n. If Aq,..., Ay are matrices in M, (F) such that
det (3,c; Ai) = 0 for every nonempty proper subset I of {1,...,m}, then
det (A1 +---+ A4,,) =0.

‘We recall from the introduction that

n

Jn = zn: En+17i,i and Zn = Z(—l)H_lE”
i=1 i=1

The proofs of the following Lemmas 2.2 and 2.3 are standard and will be
omitted.

Lemma 2.2. Let F be a field, and let n be an integer with n > 2. Then the
following hold true.
(i) Cho1(In) =1, and C,,—1(0) = 0.
(ii) If A=J, or A= Z,, then
—A if n=4k—1,4k, for k=1,2,...,
A otherwise.

Cn-1(4) =

(iii) Let a € F. Then
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(a) Cnflun —Enti1—int1-it (a_ 1)Ejj) = aFy; for every 1 <i < n,
where j is an integer with 1 < j #n+1—i<n.

(b) Coi(In=Enti-imns1-i—Ent1—jnt1—j+E) a1 jngii)
=akF;; for every 1 <i# j < n.

Lemma 2.3. Let F be a field, and let n be an integer with n > 2. Let o :
F — F be a field homomorphism and let — : F — F be a field involution. Let
A, B € M, (F) and o € F. Then the following statements hold true.

1(
(ii) Cpo1(AB) = Cp_1(A)Cph—1(B).
(iii) Cph_1(A71) = Ch_1(A)~1 when A is invertible.
(iv) Cn1(A7) = Cp1(A)7
V) Cn_l(At = Cn_l(A)t
(Vi) Co_1(A™) = Cys (A)~
(vil) Cp-1(4) = Cp_1(4)
(viii) rankC),_1(A) = n whenever rankA = n.
(ix) rankC),_1(A) =1 whenever rankA =n — 1.
x) rankC),_1(A) = 0 whenever rankA < n — 2.
i)

Lemma 2.4. Let F be a field and K be a field with an involution —. Let n be
an integer withmn > 2. Let S = Ty, . 0, (F) or Hp(K). If A € S is of rank one,
then there is a rank n — 1 matriz B € S such that A = C,_1(B).

Proof. Let A € S be a rank one matrix. We first claim that there exists a rank
n — 1 matrix D € S such that A = adjD. We distinguish our proof into the
following two cases.

Case I: § = Tp,,....n,, (F). Then there exist Es; € Tp,,... n, (F) and invertible
matrices Py, Py € Tny .. n,(F) such that A = P EgPs (see [4, Lemma 2.1]).
Let a; = (det P;))"~2 and let Q; = adjP; for i = 1,2. Clearly, o,y € F are
nonzero and Q1, Q2 € Tp,,...n, (F) are invertible. We let

Q2 (In — Eqs+ (ajaz - 1) Ejj) O if s=t,
Q2 (In = Bos — Bu— 2k Ba) @1 i s#t

Here, j is an integer with 1 < j # s < n. It is clear that D € T, .. ,, (F) is
of rank n — 1. Since adj@Q; = (det P;)"~2P; = o; P; for i = 1,2, it follows that
adJD = (alPl)(#Est)(ang) = PlEStPQ = A

oo

Case II: § = H,,(K). If A € S is of rank one, then there exist an invertible
matrix Q € M, (K) and a scalar A € K with A\ = A such that A = \QE;;Q*
(see [16, Proposition 1.32]). Let B = (det Q)" ?(det Q)" 2. It is clear that
B=pB+#0. Let U = adjQ, and let

A
D=U*" <In —E11 —E22 + /BE22> U.
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It is clear that D € H,(K) because A\/8 = \/f. Since adj(U*) = (adjU)*, we
have

A
adjD = (adJU) adj (In — FE11 — FEos + IBEQQ) (adJU)*

= (det Q)" %Q <2E11> Q(det Q)" 2Q* = (\E11)Q* = A.

Our claim is proved.
Let B = Z,D~Z,. Evidently, B is a rank n — 1 matrix in &, and

(1) Cnfl(B) = Cnfl(ZnDNZn) = Cnfl(Zn)cnfl(DN)Cnfl(Zn»

By the fact that adj(D~) = (adjD)”~ and Lemma 2.3(xi), we have C,,_1(D"~) =
Zn(adjD)Z,. By (1) and Lemma 2.2(ii), Cp,—1(B) = Z,Cnh_1(D™~)Z, =
Znw(Zn(adjD)Z,) Z,, = adjD = A, as desired. O

Lemma 2.5. Let F be a field and let K be a field with an involution —. Let
m and n be integers with m,n = 3. Let ¢ be a compound-commuting additive
map from Tn, .. ne(F) into M, (F) or from H,(K) into H,,(K). Then ¢ is
rank-one nonincreasing. Moreover, if ¥ # 0, then m = n and ¥(I,,) is of rank
n.

Proof. Let S = Ty, ... n, (F) or H,,(K). Let A € S be a rank one matrix. We see
that ranky)(A) # m because n > 3 and C,,—1 (¢(4)) = ¥(Cr—1(A)) = ¥(0) = 0.
By Lemma 2.4, there exists a rank n—1 matrix B € S such that A = C,,_1(B),
and so, Y(A) = Y(Cp—1(B)) = Cpr—1(¢(B)). Since ranky(A) # m, it follows
that ranky(B) < m — 1, and hence, ranky)(A) < 1. Consequently, ¢ is a
rank-one nonincreasing additive map.

Let v be a nonzero map. Since C,_1(¢(I,)) = Y(Cr-1(Ip)) = (1), it
follows from Lemma 2.3(viii)-(x) that either ¢(I,) = 0 or ¢(I,) is of rank m.
Suppose ¢ (I,,) = 0. Then ¢(E;;) = 0 for all ¢ = 1,...,n. This is because,
for each 1 < i < n, Y(Ey) = Y(Cno1(In — Enti—ingi1-i)) = Cno1(W(n —
Ent1—inti-i)) = Coo1(—¥(Ept1—int1—:i)) = 0. For each a € F (respectively,
a € Kwitha=aift S = H,(K)) and E;; € S, in view of Lemma 2.2(iii), we
see that aF;; = Cp—1(L, — Engi—inti—i + (@ — 1)Ej;), where j is an integer
with 1 <j#n+1—i<n. Thus, Y(aE;;) = Cpo1(W(In — Ent1—int1—i + (a—
1)E;;)) = Ch—1(¢((a — 1)E;;)) = 0. Therefore, we have

(2) Y(aE;;) =0
for every E;; € S and a € F (respectively, a € K with @ = a if S = H,,(K)).

When S = T, n, (F), for each a € F and E;; € Ty, n, (F) with 1 <4 #
7 < n, we have

..........

aEij = Cn1(In = Ent1—im+1—i — Bny1—jmy1—j + (=1 aE, 1 jng1-s)
by Lemma 2.2(iii). So, by (2), we see that
P(aBij) = Coa (W((=1)" aEpi1—jni1-4) =0
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since 1) is rank-one nonincreasing. Therefore, 1)(aE;;) = 0 for every a € F and
Eij € Toy...ny(F) with 1 < i # j < n.

When § = H,(K), for each ¢ € K and 1 < i # j < n, for the sake of
simplicity, we denote

G=1I,—Enti—inmt1—i = Ent1—jns1—j + aBpii—iny1—j + @Eni1—jnyi—i).

We see that G € H,,(K) and C,,—1(G) = —aa(l, — Ei; — Ej;)+ (=1 aE,;,; +
ani~ By (2)7 we obtain I/J(Cnfl(G)) = QZJ(—CLE(In—Eii—Ejj)+(—1)i+j+1aE¢j+
aEj;) = (1) y(@E;; + aEj;). On the other hand, by (2), we see that

Y(Cr-1(G)) = Crnoaa(W(G)) =Cro1(W(aBnti—inti—j +@Ent1—jnt1-i))
= Y(Cho1(aBnt1—int1—j +aEpt1-jnt1-i)) = 0.

Hence, ¥(@E;; + aE;;) =0foralla € Kand 1 <i# j < n.

In both cases, together with (2), we conclude that 1) = 0, which contradicts
to our hypothesis. Then #(I,) # 0. Hence, ¥ is a rank-one nonincreasing
additive mapping with ¢ (I,,) being of rank m. By the additivity of ¢, we see
that n

m = ranky(I,) < Zrankw(Eii) < n.
i=1
Suppose n > m. Since ¥(I,) is of rank m, it follows from Lemma 2.1 that
there exist integers 1 < s1 < -+ < s < n with m < k < n — 1 such that
rank¢(Es1s1 +oo ESkSk) =m. ThUS,

m = rankCp,_1(Y(Esys, +- - -+ Esys,.)) = rank)(Cp 1 (Esy s, +- -+ Eg.5,.)) < 1,

a contradiction. Hence, m = n. This completes our proof. (]

Let n > 1 and let F be a field. Let r, €1,...,€. be positive integers such
that e, +--- + €, = n. For each integer 1 < i < r, we denote d; = ¢1 + -+ +¢;
and dg = 0. Given a matrix A € M,,(F), we associate a unique n-square block
diagonal matrix

A 0 0
r 0 A, 0
@ A; = .
i=1 :
0 0 A,

where, for each 1 < i < r, A; is the ¢;-square principal submatrix of A lying
in rows (d;—1 +1),...,d; and columns (d;—; + 1),...,d;. Such a block matrix
@._, A; is called the (e1,..., €. )-block diagonal matriz induced by A.

Given an n-square block triangular matrix algebra 7y, .. . (F), we denote

Let h be a positive integer with h < |Q|. By Hpp, ... e, We designate the
totality of strictly increasing sequences of h integers o = (a, ..., @) chosen
from 2 satisfying @y = 1 and ap = n. In particular, when n; = 1 for all 4,

we write Hp pny, . n, a8 Hp . It is clear that when n =1 (ie., Ty, 0, (F) =
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Ti(F)), @ = {1} and a = 1. Given o = (a1, 2,...,0p) € Hyp,, we denote
a”=n+1-ap,...,n+1—as, n+1—ay) € Hy,, and clearly, (™)~ = a.
For example, if @ = (1,2,6,9) € Hyy, then o™ = (1,4,8,9) € Hyyo.

For each matrix A = (a;;) € Tny,... 0, (F) and o = (a1, ..., ) € Hy oy, mies
we associate with a unique n-square matrix, denoted A(a), to be A(a) := A
when n =1, and

(3) Ala) = Z Aa, + Z Al - Z o0, FBo o, whenn > 2

1<s<h 1<s<h 1<s<h
s odd s even

where, for each 1 < s < h, Ay, = (b;;) is the n-square matrix whose entries
are given by

I if a; <4,j < asq1,

* 0 otherwise.
Furthermore, if o1, ..., 05,_1 are field homomorphisms on FF, we use the notation
A(a)%t7n-1 to designate the n-square matrix defined by

(4) Aa)7r 1= Z A+ Z (Ag:)t - Z 0s(a,a,)Baya,

1<s<h 1<s<h 1<s<h
s odd s even
when n > 2, and A(a)?t -1 := A% whenn =1. If oy = -+ = op_1 =
o, then A(a)?t -1 = A(a)?. For example, if A = (a;;) € To(F ) =

(1,2,3,6) € Hy, and 01, 09,03 are field homomorphisms on F, then

0'1((111) O'1(CL12) 0 0 0 0
0 0'1((122) 0 0 0 0
A(a)a'l,o'g,o'g _ 0 02(623) 02(033) 03(6134) 03(a35) (a36)
0 0 0 03(asa) o03(ass) o3(ase)
0 0 0 0 os(ass) o3(ase)
0 0 0 0 0 ag(a%)
Let m, n and p be integers with 1 < n < m and 0 < p < m —n. We recall

that E;; and F;; denote the matrix umts in M,,(F) and Mm(]F), respectively.
Let @ : Tp, .. 0y (F) = M, (F) be the additive map defined by

0, 0 0
e d(A)=|0 A(a)rr=o-1 0] forall A= (a;;)— Zg:l Go,e, Eoyo,
0 0 0
€ Tny,..oni (F),
1) o ®(aEu.a,) = 271 9sj(a)Fyta,,j for all a € F, whenever 1 < s < h is
odd, and
o ®(aBn,a,) = 251 95j(a)Fj pra, for all a € F, whenever 1 < s < h is
even,
where @ = (ay,...,ap) € Hpny,...np» 01, - - -, 0p—1 are nonzero field homomor-

phisms on F, and ¢11, ..., gnm are additive maps on F such that
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(i) for each 1 < s < h, gspta.(1) =1 and g5;(1) =0 for j # p+ o,
(ii) when ny > 2, g1,p+1 = 01 and ¢1; = 0 for every j # p+ 1, and
(i) when ng > 2, gh ptn = op—1 and gp; = 0 for every j # p+n.
In view of Definitions (3) and (4), it is easy to check that rank A(a)7t7n-1 < 1
whenever A is of rank one. Consequently, the map ® defined in (I) is a rank-one
nonincreasing additive map with ®(I,,) =0, & I, ® Oy p—n.
An additive map ¢ : Tp, .. n, (F) = M, (F) is said to be (n, p)-block rank-
one nonincreasing if ¢ or ¢! is of the form ® defined in (I). Here, 9! is the
map defined by 1*(A) = ¢ (A)! for all A € Ty, . n, (F).

We state the following result proved in [3, Theorem 2.10].

Lemma 2.6. Let F be a field, and let m and n be positive integers with m >
n>=1. Then ¥ : Ty, n(F) = My (F) is a rank-one nonincreasing additive
map with ¥ (I,) being of rank n if and only if there exist invertible matrices
P,Q € M,,,(F) and integers 0 = sg < s1 < -+ < 8, = k such that

Y(A) =P <XT’: @i(Ai)> Q forallAe Ty,  n(F).

Here, @;_, A; is the (eq, ..., €)-block diagonal matriz induced by A with e; =
0s; — 0s;_4s 05, = 1+ -+ +mns, and o = 0, and for each 1 < i < r,
Qi : Tny,  1veons, )= My (F) is a (€, s, ,)-block rank-one nonincreasing
additive map as described in (I).

Lemma 2.7. Let F be a field. Let r,e1,...,€. be positive integers such that

e+ --+¢€ =n. Let A€ T,(F), and let a; € Hy, ., with positive integer
ki <e fori=1,...,7. Then

Ch-1 (@ Ai(%)) = <@ Cn—l(AN)i(ai)> ;

where @;_, Ai and @._; Cr,_1(A~); are the (e1, ..., €.)-block diagonal matri-
ces induced by A and Cp,_1(A™), respectively.

Proof. Let N ={1,...,n} and let

f:{(s,t)ENxN

Es € To(F) and é;(Est)i =+ 0} ,
i=1

where @;_, (Eq); is the (eq, ..., € )-block diagonal matrix induced by Eg. Let
A € T,(F). We denote

T T
X = (z4) = ad] (ED Az»(ai)) and Y = (yu) = €P (adjd)i(ow),
i=1 i=1
where @;_, A; and @._, (adjA); are the (eq,...,¢€,)-block diagonal matrices
induced by A and adjA, respectively. We first claim that X = Y. Since the
classical adjoint of a block triangular matrix is also a block triangular matrix
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of the same type, it follows that x5 = 0 = yg for every (s,t) ¢ #. We
now consider z,, with (p,q) € #. Then there exists 1 < 49 < 7 such that

(qu)io # 0. SO7

Tpg = (—1)PT 2 det ((@A Q; ) q|p>

= (=1t | [ detAi(as) | x det(As, (es,)lglp])-
i=1, istio
Since each A; is upper triangular, by Definition (3), we have det A;(a;) =
det A;, and so

(5) Tpg = (=1)7F ( H detA) x det(Aj, (aio )[glp)-

=1, i#io

We now consider the following two cases. If (Epq)i, (ci,) = 0, then y,, = 0 since
adjA € T, (F). On the other hand, it can be verified that det(A;, (e, )[q|p]) =
and so, zpq = 0 by (5). Hence, zpq = 0 = ypq. Next, we consider (Eg);, (o) #
0. Since

det(Ai,[qlp]) if  (Epg)io(vig) = (Epg)igs

de““‘“’(%”q"’”{ det(Anlpld)) I (Bpo)io (@) = (Bpo)t, = (Eap)io

By (5),
= 7 (T i det A0 <detAufabl) T (o) =
" W Tz, i, det Ag ) xet( sy [pla)) 3 (Bpg)ig(04,) = (Eapio-
_ pﬂdet (Alalp) i (Bpaia(@in) = (Epai
DPFadet(Alplg]) i (Epglio(ig) = (Egp)io
— ad.]A if (qu)lo(alo) (EPQ)
ad.]A if (E;Dq)lo(am) (EIIP)lov

since adjA € T, (F). Hence, xs = ys for every 1 < s,t < n, as claimed. So, we
have

r

(6) ad_] (@ Az(al)> = @ (ad_]A)l(Oél)

i=1

Since Cy,—1(A)~ = Z,(adjA)Z,, and Z,, = @::1(Zn)i and (Z,)iAi(a;)(Zn): =
(Z,AZ,)i(o;), where @;_,(Z,); and @;_,(Z,AZ,); are the (e1,. .., € )-block
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diagonal matrices induced by Z,, and Z,AZ,, respectively, and together with
(6) and Lemma 2.3(xi), we obtain

(o () == (e )=

=7, <@(ade)i(ai)>Zn
i=1

= P(Z.)i(adjA)i(0:)(Z);

i=1

Cn—l (Aw)i(()[i).

@-

Il
—

(2

Here, @:zl Cn—1(A™); is the (e,...,€.)-block diagonal matrix induced by
Cp—1(A™). This completes our proof. O

~—

By Lemmas 2.5, 2.6 and 2.7, we give a general form of compond-commuting
additive maps from triangular matrices to square matrices over an arbitrary
field. More precisely, we have:

Theorem 2.8. Let F be a field, and let m and n be integers with m,n > 3.
Then ) : Tn(F) = My, (F) is a compound-commuting additive map if and only
if either ¢ = 0, or m = n and there exist positive integers 0 = s9 < 51 < -++ <
Sp = n with §; — S;—1 = Sy41—5 — Sr—; for i = 1,...,r, and a nonzero field
homomorphism o : F — F such that
Y(A) =P (@ Nidi(ei) + (1 — Ai)Ai(ai)t]U> Q forall AeT,(F).
i=1

Here, @._, A; is the (e1,...,€.)-block diagonal matriz induced by A with €; =
8; —Si—1 and €, = €,41—; fori=1,...,7; oy € Hy, , for some positive integer
ki < € with k; = kyy1—; and of = qpy1—; fori=1,...,r; P,Q € M, (F) are
invertible with Cy,—1(P) = P(@;_, pile,) and Cp—1(Q) = (D)_, p; *I,)Q for
some nonzero scalars pi1, ...,y € Fy and Ay, ..., A\ € {0,1} with Apy1-s = N
when k; even, or A\py1—; =1 — X\; when k; odd fori=1,...,r.

Proof. Sufficiency part. 1t is clear that ¥ = 0 is a compound-commuting ad-
ditive map. Suppose 1 # 0 and it is of the form stated in Theorem 2.8. Let
A € T, (F). By Lemma 2.7, it is easily checked that

Cn,1 (é )\ZAZ(OQ) + (1 — )\i)Ai(ai)t>

= (@ AiCn—1(A7)i(aq) + (1 —Ai)Cnl(AN)i(ai)t) ;
i=1
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where @;_, A; and @)_, C,,—1(A™); are the (e1,. .., €. )-block diagonal matri-
ces induced by A and C,,_1(A"™), respectively.
Since (@2:1 Ai)N = @Z:l(AT-i-l—i)N and

(Ai)~(a;)  when «; € Hg, ., with k; even,

(3

(A)~(af)t  when «; € Hy, ., with k; odd,

K3

(7) Ai(a;)™ = {
it follows that

<@ XiCn—1(A™)i(ou) + (1 — )\i)Cnl(AN)i(ai)t>
i=1

- @ M1 Cro1 (A r1—i(arg1—i) + (1 = Arg1—4) Cro1 (A )rg1—ioi1—i) ']~
i=1

= D Bri1-iCnt(A) 1) " (07120) + (1 = Brr=i) (Coma (A7) 1) ™ (74 )'
=1

where Br41-i = Apt1—; when k.41, is even, or Brp1—; = 1 — App1—; when
kri1—; is odd for i = 1,...,r. Since, for each 1 <7 < r, we have \.y1_; = \;
when k; is even, or A.y1_; =1 — \; when k; is odd, it follows that 8, 1_; = \;
for i = 1,...,r. Together with the fact that k. ;_; = k; and a7, _; = «; for
i=1,...,r, we obtain

@ Bra1-i(Crn1 (A1)~ (@ i) + (1= Brg1-i) (Cr 1 (A™ ) g1 =) (o)

@ Ai(Cro1 (A1)~ (i) + (1= X)) (Crm1 (A )1 i)™ (i)

Further, since €¢,41—; = ¢; for i =1,...,r, we have
@(AN)i = @(Awki)N,
i=1 i=1
and so,
@(Ar-‘rl—i)N(O‘i) = @(Aw)i(a,-),
i=1 i=1

where @;_,(A~); is the (e1,...,€.)-block diagonal matrix induced by A™.
Together with the fact that C,—1(A4)~ = C,,—1(A"), we see that

@ Ai(Cro1(AY)pg1-0)™ (i) + (1= X)) (Crma (A7) g1 i)™ (i)’

= @ Ai(Cr1 (A)™)ilai) + (1= M) (Cr1 (A7) ™))
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T

= P MCno1(A)i(e) + (1= Xi)Cruo1(A)i(ai)".

i=1

Therefore,

Crn1(¥(A)) =Cn <P (@ Nidi(ag) + (1 — Ai)Ai(O‘i)t]a> Q)
=Cn-1(P) Cpy (@ [Aidi(os) + (1 — Ai)Ai(ai)t]> Cn-1(Q)

=P (@ AiCr—1(A)i(a;) + (1 — /\i)Cn1<A)i(ai)t> Q
=P(Cr-1(4)).

Hence, 9 is a compound-commuting additive map.

Necessity part. If b # 0, then, by Lemma 2.5, we have m = n, and 9 is a
rank-one nonincreasing additive map with ¥(I,,) being of rank n. In view of
Lemma 2.6, there exist integers 0 = sp < s1 < --- < s, = n, and invertible
matrices P, Q € M, (F) such that

(8) P(A) = P(i <I>1(Az)>Q for all A € T, (F).

Here, @._, A; is the (eq,...,€-)-block diagonal matrix induced by A with
€ =8 — s;—1 fori=1,...,r, and each ®; : T.,(F) - M, (F) is a (e, s;-1)-
block rank-one nonincreasing additive map as described in (I), i.e., either ®;
or ®! is of the form:

(a) A 05, DA(;)7r 7% -1@0 forall A = (apq)_zll‘il Qosy,0ie Boir,0i €

e, (F),
(II)(b) aFEn;, 00 — Z?Zl gtj(@)Es, |+a,,; foralla € F, whenever 1 <t < k;
is odd, and
(¢) aBap i = 25—y 9t5(a)Ej s, 1 +ay, for all a € F, whenever 1 <t < k;
is even.
Here, 01, ..., 0%,—1 are nonzero field homomorphisms on F, o; = (a1, . . ., Qik;)
€ Hy, ¢, fori=1,...,n, and g11,..., gr;,n are additive maps on F such that

for each 1 <t < ki, gt,5; 140a:, (1) =1 and g4j(1) = 0 for every j # s;—1 + aq.
Let ¢ : T, (F) = M,,(F) be the additive map defined by

(9) o(A) = P7lp(A)Q™"  for all A € T, (F).
By (8) and (9), we get

(10) p(A) = i D,;(A;) for all A € T,(F).

i=1
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By (8) and the structure of ®;’s as described in (II), we have ¢)(I,,) = PQ. Since
Crno1(¥(I,)) = ¥(Cro1(I)) = ¥(I,), we conclude that C,_1(PQ) = PQ,
and so, P71C,_1(P) = QC,,_1(Q71). Let 1 < j < n. Since ¥(Cp_1(I,, —
En—i—l—j,n—i—l—j)) = Cn—l(l/}(-[n - En—l—l—j,n—l—l—j))a it follows from (8) and (II)
that PEij = Cnfl(P)Eijnfl(Q). Thus

P_lcn_l(P)Ejj = ijCn_l(Q_l) = Eij_lCn_l(P) for allj = 1, .oy n.

Therefore, P~1C,,_1(P) = D for some invertible diagonal matrix D = diag(d,
oy dy) € My (F). Hence

(11) Cn_1(P)=PD and C, 1(Q)=D"'Q.

Since ¥(Cr—1(A)) = Cr—1(¥(A)) for all A € T,(F), it follows from (9) and
(11) that

(12) o(Cr_1(A)) = DCy_1(0(A)D~  for all A € T,,(F).

In view of (10), and by the structure of ®;’s as described in (II), we see that
o(Fss) = Egs for all s, and when s < t, we have ¢(Es) = FEg or p(Eg) = Eis
for every Es; ¢ kerp. Here, ker ¢ stands for the kernel of ¢. We now show
that if Eg ¢ ker ¢, then

(13) 0(Es) =Est =  @(EBnt1—tnt1-s) = Enti—tnti1—s,

(14) <)0(Ebt) = Ets = @(En-&-l—t,n-‘rl—s) - En+1—s,n+1—t~

We show only (13) as (14) can be proved similarly. By Lemma 2.2(iii)(b) and
(12), we have

@(EnJrlft,nJrlfs) = o(Cn1(ln — Egs — By + (_1)S+t+1Est))
= DCh_1(p(I, — Egs — Eyy + (—1)*TH1E, ) D1
= DCh1(In — Ees — By + (=1)*""" Ey)) D™}
= D(En+17t,n+1fs)D71
= (dns1-edyys_ ) Bnti—tmii—s.

Thus, ¢(En+1-t,n+1—s) 7 0. On the other hand, in view of the structure of
®,’s as described in (IT), we know that ¢(Ept1—tn+1—s) = Enti—tnti—s O
@(En+l—t,n+l—s) = En+l—s,n+l—t- SO, we conclude that SD(En—&-l—t,n-&-l—s) =
Ent1—tn+1-s, and thus, (dn+1,td;_~1_1_s) =1, that is, dy11-¢ = dpa1—s. Con-
sequently, (13) is proved. Moreover, we note that if F,11_¢,11-5 ¢ kerg,
then, by the structure of ®;’s as described in (II), there exists an integer
1 < ip < r such that 5,1 +1 <n+1—-s,n+t—t < s;. Therefore,
the result d,,11-¢ = dpt1—s Whenever E, 41 ¢ nt1-s ¢ kero leads us to the
conclusion dg, ,41 = --- = dg, for every 4 = 1,...,r. Hence, we obtain
D = @._, pil., for some nonzero scalars pi,...,pu, € F, and by (11), we

get Cn1(P) = P(Di_, pile,) and Cro1(Q) = (B, 17 ') Q.
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We claim that there exists a nonzero homomorphism ¢ : F — F such that
either

15 alb;;)=o0(a)E;; foreverya€F and1<j < n.
® 33 Jj

By the structure of ®,’s as described in (II), we see that, for each 1 < j < n,
¢(aEj;) is of the form as described in (a), (b) or (c). We distinguish our proof
into the following two cases:

Case I: Suppose there is an integer 1 < jo < n such that ¢(aFEj, j,) is of the
form as described in (a), i.e., there exists a nonzero homomorphism o, : F — F
such that p(aEj, j,) = 0j,(a)Ej, j, for every a € F. Let 1 < j # jo < n and
a€c€F. If j #n+1— jo, then, by Lemma 2.2(iii)(a) and (12), we have

p(akj;) = o(Coi(ln = Enpr—jnyi—j + (@ —1)Ejg j))
= DCh1(p(In — Ent1—jnt1-j + (a — ]‘)EjOVjO))D71
= DCp1(In = Ensi—jms1—j + (0, (a) = ) Ejy ) D™
D(ajy(a)Ej;)D™" = 0, (a) Ej;.

If j = n+1—jp, then, since n > 3, we select 1 < j; < n with j1 # jo, n+1—jo,
and so

o(aBni1-jont1-jy) = ©(Cne1(In — Ejy 4, + (@ = 1)Ej, j,))
= Dcn—l(ln - Ejo,jo + (Gjo (a) - 1)Ej

= 0jo(a)Ent1—jont1—jo-

)~

lajl

Consequently, we conclude that there exists a nonzero homomorphism o : F —
F such that ¢(aF;;) = o(a)Ej; for all 1 < j < n and a € F. We are done.

Case II: Suppose, for each 1 < j < n, ¢(aFj;) is of the form as described
in (b) or (c) only. We divide our argument into two cases:

Subcase 1: Suppose there exist integers 1 < s1 # so < nsuch that Y(aE, s,)
and (aFs, s,) are of distinct forms. We may assume, without loss of gener-
ality, that ¥ (aFs, s,) and ¢(aEs, s,) are of the forms as described in (c) and
(b), respectively, and s # n+ 1 — s1. Let p(aEs, 5,) = 2?21 Gs1,j(a)Ej s,
and p(aFs, s,) = 21— Gs,,5(a) Es, j, where gs, 1., Gsiny Gsy1 -+ Gspms 1€
additive maps on F such that g, 5,(1) = 1 for i = 1,2, and for each i = 1,2,
gs;,;(1) =0 for all j # s;. By (12), we see that

plabs, s,) = P(Cno1(In — Engi-s,n+1-s + (@ — 1)Es, 5,))
= DC7L—1(<P(I7L - En-l—l—sl,n-‘rl—sl - Esz,sz + aESmSz))Dil

n
- -DCnfl In - En+1751,n+1731 - ESQ,SQ + ZQSQ,j(Q)ESQ,j D71
j=1

= D(gs2,82 (a)EShSl + (_1>81+S2+lgs2,n+1*81 (a)Esl,nJrl*Sz)D_l
= YGsa,s2 (a)E51781 + (*1)81+S2+19527n+1—51 (a)ﬁlEsl,n+1—52,
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where DEg, p11-5,D7! = B1Eg, nt1-s, for some nonzero scalar 8, € F. Then
n
nglx.j(a)Ejasl = SD(O’ESMSI)
j=1

= 0ss,s9 (Q)ES1,81 + (_1)Sl+52+1952,n+1751 (a)ﬁlEsl,n+1*S2)

and so, gs,,; = 0 for all j # s;. Hence, we obtain p(aFs, s,) = gs,.s, (a)Es, s,
for all a € F.

Subcase 2: Suppose all p(aFE};)’s are of the same form. Without loss of
generality, we assume ¢(aE;;) is of form (b) for all j =1,...,n. Since n > 3,
there exist integers 1 < s; < s < s3 < n such that so # n+ 1 — s; and
sg #n+1— sy Let p(aFEs, s,) = 2;21 gs, 5(@)Es, j for i = 1,2,3, where
Gsi1s- -3 0s1.ms Gsa1s- - - » §sy,n are additive maps on F with g, 5, (1) = 1 for ¢ =
1,2,3, and for each 1 <4 < 3, g,,;(1) =0 for all j # s;. By a similar argument
as in Subcase 1, we see that ¢(aFEs, s,) = ©(Cpn_1(In — Engi—synt1—s, + (@ —
1)Es, s,)) leads to

Z Ysz,5 (G)Esz,j = (p(aESmSz)
j=1

= Gs5.55 (@) Esy 55 + (_1)82+83+1983,n+1782 (a)B2Esy nt1-s;

for some nonzero scalar 82 € F. So, gs,,; = 0 for all j # s2, n +1 — s3, and
hence,

(16) w(aESZ,SQ) = Gsz,s2 (a)E52,52 + Gsont+1—s3 (a>E327n+1753-

Next, we consider p(aFs, s,) = (Cno1(In — Ent1—synt1-s, +(@—1)Es, s,))-
By (16), since s; # s3, we get g, ; = 0 for all j # s, and hence, ¢(aFs, s,) =
Gsy,5,(a)Es, 5, for all a € F.

We denote 0 = g,,,5, and s; = s for the sake of simplicity. In view of
the proofs of Subcase 1 and Subcase 2, we have shown that there exist an
integer 1 < s < n and an additive map o on F with o(1) = 1 such that
p(aEss) = o(a)Ess for all @ € F. Therefore, by repeating a similar argument
as in the proof of Case I, we can show that ¢(aFEj;) = o(a)E;; foralll <j < n
and a € F. To complete the proof of Claim (15), it suffices to show that o is
a field homomorphism on F. Let a,b € F and let 1 < t; # to < n with
t; #n+1—sfori =12 We see that abEss = Cp—1(In — Enti-snti-s +
(CL — 1)Et11t1 + (b — 1)Et2,t2)~ Thus

o(ab)Ess = @(abEss)
- Cn—l(‘ﬁ(In - En-i—l—s,n—i—l—s + (a - 1)Et1,t1 + (b - 1)Et27t2))
= Cnfl(ln - En+175,n+173 + (U((l) - 1)Et1,t1 + (U(b) - 1)Et2’t2)
= o(a)o(b)Ess.

Hence o(ab) = o(a)o(b) for all a,b € F, so o is a homomorphism on F. Thus
(15) as claimed.
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We next claim that p(aFEs:) = o(a)Es or ¢(aFEst) = o(a)FEys for all Eg €
Tn(F)\kerp and a € F. Suppose there exists an integer 1 < j; < n —1
such that Ej, j,+1 ¢ ker . By the structure of ®;’s as described in (II)-(a),
there exist an integer 1 < 43 < r with s;,_, 41 < j1 < s, and a nonzero
homomorphism o;, : F — F such that p(aEj, j,11) = 0j,(a)Ej, j,+1 for all
a € F, or p(aEj, j+1) = 0j,(a)Ej 41,5, for all a € F. We consider only the
first case as the second case can be treated similarly. We first note, by (13),
that o(En—j, nt1—j,) = En—j,nt1—j;- Since n > 3, by choosing 1 < j < n
with j # j1,71 + 1, and together with (12) and (15), we have

e(aEj, ji+1)
= ¢(Cn-1n = Ent1—jint1-j1 = En—jin—js + Enjinir—ji + (@ = 1) Enii-jni1-;))
= DCh1(In — Entr—jynt1-jn = Enjyn—gs + Encjonsiog +(0(0) = DEny1_jnr—;) D!
= D(o(a)Ej, j+1)D "

Since s, ,+1 < j1 < 8, and D = @;_, pil.,, we get D(o(a)Ej, j,+1)D7 ! =
o(a)Ej, jy+1, and so, 0j, (a)Ej, j,+1 = @(abj, j,+1) = 0(a)Ej, j41 for all a €
F. Hence, 0;, = 0. Consequently, by (15) and together with the structures of
®,’s as described in (II), the claim is proved.

In view of (9), (10), (15) and by the structures of ®;’s as described in (IT),
we obtain

Y(A) = P(@ NiAi(ou) + (1 — )\i)Ai(ai)t]">Q for all A € 7,,(F).
i=1
where o; € Hy, ., and A\; € {0,1} fori=1,...,r, and P,Q € M, (F) are invert-
ible matrices with C,,_1(P) = P(@]_, pil.;) and C,—1(Q) = (D_, p; '1,)Q
for some nonzero scalars q,...,u, € F. By (9), (13) and (14), we conclude
that
Ej,j—i—l ¢ ker¢ - En—j,n-i-l—j % kerw.
Thus, €; = €,.41—; for every i = 1,...,r. Let A € T,(F). For each 1 < i < r,
we denote
Xi = [)\ZAZ(OQ) + (]. — )\i)Ai(OLi)t}U
and
Y; = NiCno1(A)i(aq) + (1= X)Cro1(A)i(ai)']°,

where @;_, Cn—1(A); is the (e, ..., ¢ )-block diagonal matrix induced by C,,_1(A).
Since Cp—1(¥(A)) = P(Cr_1(A)), it follows that

Cn_l (@Xz> = Cn—l(P)ilw(cn—l(A))Cn—l(Q)il

= (EB u;llq)(EB m)(EB pile,)



COMPOUND-COMMUTING ADDITIVE MAPS ON MATRIX SPACES 99
s
-
i=1

Further since ¢; = ¢,41—; forall i =1,...,r, we have

(@A) =é (Arp1-4)”,

i=1

and together with (7) and Lemma 2.7, it is easy to see that

G- (@)

Sy 1<@[AA< ) <1—Ai>Ai<ai>tr>

i=1

((@A Cn-1(A7)i(ei) + (1 = Ai)Cn_l(AN)i(ai)t> )

@ [Bri1-iCn-1(A)i(ayy ;) + (1 = Bry1—i)Cro1(A)i (o) 17,
i=1

<

where B,41-; = Ar41—; when k,yq_; is even, or Br4y1-; = 1 — A\.y1-; when
kr+1_1‘ is odd for i = 17. N Thus, Y; = [/Br+1—icn—l(A)i(a;+17i) + (1 —
BT+1,i)Cn,1(A)i(a7?+1_i)t]" for all 4 = 1,...,r. Hence, for each 1 < ¢ < 7,
we have of = opq1-4, ki = krp1-4, and App1—; = A; when k; is even, or
Art1—; = 1 — X\; when k; is odd. This completes our proof. [l

We give two examples to illustrate the result obtained in Theorem 2.8.

Example 2.9. Let F be a field, and let o be a nonzero field homomorphism
onF. Let ¢ : T5(F) — M5(F) be the map defined by

O’(au) U(alg) 0 0 0
0 U(CLQQ) 0 0 0
o(A)= 0 o(agzs) o(ass) 0 0 for all A= (a;;) € T5(F).
0 O'(a24) O'(CL34) O'(CL44) 0'(045)
0 0 0 0((155)

We see that ¢ is a compound-commuting additive map and ¢(A4)~ = ¢(A™)
for all A € T5(F).
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Example 2.10. Let F be a field, and let o be a nonzero homomorphism on
F. Let ¢ : To(F) — Mg(F) be the map defined by

olar) O 0 0 0 0 0 0 0
O’(alg) O'((lgg) U(azg) 0'((124) 0 0 0 0 0
0 0 O’(agg) O'(CL34) 0 0 0 0 0
0 0 0 o(aw) 0 0 0 0 0
P(A) = 0 0 0 0 o(ass) 0 0 0 0
0 0 0 0 0 0'((166) a(am) O'(aﬁg) 0
0 0 0 0 0 0 O'(a77) 0'(1178) 0
0 0 0 0 0 0 0 olass) 0
0 0 0 0 0 0 0 0'((189) U(agg)

for all A = (a;;) € To(F). It is easy to check that ¢ is a compound-commuting
additive map and (A)~ = ¢ (A”) for all A € Ty(F).

As an immediate consequence of Theorem 2.8, we have the following corol-
lary.

Corollary 2.11. Let F be a field, and let m and n be integers with m,n > 3.
Let ¢ : To(F) = My (F) be a compound-commuting additive map. Then the
following statements are equivalent.

(a) 1 is injective.

(¢c) m = n and there exist a nonzero field homomorphism o : F — F and in-
vertible matrices P,Q € M, (F), with C,,—1(P) = pP and Cp,—1(Q) =
pu=tQ for some nonzero element u € F, such that

PY(A) = PA’Q for all A€ M,(F), or
P(A) = P(A°)'Q for all A€ M, (F).

Proof. (a) = (b) Trivial. (b) = (c) Since v is nonzero, it follows from Theorem
2.8 that m = n, and together with the fact that ¢(Ey,) # 0, we conclude that
there exist a scalar A € {0,1}, a nonzero field homomorphism ¢ : F — F, and
invertible matrices P, Q € M, (F), with C,,_1(P) = uP and C,,_1(Q) = p~1Q
for some nonzero element y € F, such that

P(A) = P(AAT + (1 = N (A)HQ for all A € M,,(F).
(¢) = (a) Trivial. We are done. O

By Lemmas 2.5 and 2.6, we obtain a characterization of compound-commu-
ting additive maps between square matrix algebras over the same field.

Theorem 2.12. Let F be a field, and let m and n be integers with m,n > 3.
Then v : My (F) = M, (F) is a compound-commuting additive map if and only
if either ¥ = 0, or m = n and there exist a field homomorphism o : F — F, and
invertible matrices P,Q € M, (F), with C,,_1(P) = pP and C,,_1(Q) = n~1Q
for some nonzero element p € F, such that

P(A) = PA°Q for all A€ M,(F), or
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P(A) = P(A°)'Q for all A€ M, (F).

Proof. The sufficiency is clear. We now consider the necessity. Suppose 1 # 0.
It can be deduced from Lemma 2.5, applied on Ty, ., (F) = M, (F) (ie.,
k = 1), we get m = n and 9 is rank-one nonincreasing with (I,,) being of
rank n. By Lemma 2.6, again applied on T, n, (F) = M, (F), there exist
a scalar A € {0,1}, a nonzero field homomorphism o : F — F, and invertible
matrices P, Q € M, (F) such that

P(A) = P(AA7 + (1 = N (A)HQ for all A € M,,(F).
Since ¥(Cr—1(A)) = Cr—1((A)) for all A € M,,(F), we have
P71C,_1(P)Eij = E;QC,_1(Q) ™"

for all E;; € M, (F), and so, P~*C,_1(P) = pl,, = QCr—1(Q)~" for some
nonzero element p € F. Hence, C,,_1(P) = uP and C,,_1(Q) = p~ Q. We are
done. O

By Lemma 2.5, Corollary 2.6 in [8] and Theorem 2.1 in [7], we have:

Theorem 2.13. Let F be a field, and let m and n be integers with m,n > 3.
Then 1 : Sp(F) — S (F) is a compound-commuting additive map if and only
if v =0, or m =n and there exist a nonzero field homomorphism o : F — F

and an invertible matriz Q € M,,(F) with C,_1(Q) = pQ such that
P(A) = ANQA° Q" for all A€ S,(F),
where \, i € F are scalars such that \"~?p? = 1.

Proof. The sufficiency part can be easily checked. For the converse, we suppose
1 # 0. By Lemma 2.5, applied on H,(F) = S, (F) (i.e., the field involution
~ on F is identity), we get m = n and v is a rank-one nonincreasing additive
map with () being of rank n. By Corollary 2.6 in [8] and Theorem 2.1 in
[7], we see that 1 is of the following forms:

(a) ¥(A) =AQA°Q! for every A € S, (F), or

(b) ¥(A) = PC(A)P! for every A € S, (F), only when n = 3 and F =

Zs :=1{0,1}.

Here, Q € M, (F) and P € M3(Zs) are invertible matrices, A € F is a nonzero
scalar, o is a nonzero field homomorphism on F, and ( is a rank-one nonin-
creasing linear map on S3(Zsz) with ((I3) being of rank 3.

We first consider ¢ is of form (a). By the fact that C,,—1 (¥(A)) = (Cp-1(4))
for A € S,(F), we have (\Q)"'C,_1(AQ)D;; = D;;Q'C,—1(Q%) ™! for all
1 < 'L,j < n. Here, .D“ = Ly, and -Dij = 7In+E”+EJJ+(*1)Z+J+1(Em +Eﬂ)
when i # j. Thus, (A\Q)™1C,,-1(AQ) = p~ I, = Q'C,,_1(Q")~! for some
nonzero scalar p € F, and hence, C,,_1(Q) = pQ and \" 22 = 1.

Next, we suppose ¢ is of form (b). The compound-commuting of ¢ yields

(17) ((C2(A)) = DC(((A) D' for all A € S5(Z2),
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where D = P~1Cy(P) € M3(Zsy) is invertible. By (17), we see that ((A) is
singular whenever A € S3(Zs) is singular. For, suppose rank((Ag) = 3 for some
singular matrix Ag € S5(Z2). Then rankCs(Ap) < 1, but rank((Cy(A4y)) =
rank(DC5(¢(Ap))D") = 3, which contradicts to the fact that ¢ is rank-one
nonincreasing. Further, the linearity of ¢ and rank{(/3) = 3 thus ascertain
that rank((E;;) = 1 for i = 1,2,3, and rank((E;; + Ej;) = 2 for all 1 < i #
j < 3. Since ((F11) € S5(Zs) is of rank one, there exists an invertible matrix
U, € M3(Zg) such that C(Ell) = UlEllUf. Let

a B
((Ea2) =U (Blf Di) U{

with a1 € Zo, By € M172(Z2) and Dy € 82(Z2). Clearly, D; # 0. This
is because if D; = 0, then, since rank((Fs3) = 1, we have B; = 0, and
so, rank((E11 + Fa2) < 2, a contradiction. Further, since rank((Fss) = 1,

we conclude that D; is of rank one. Then there exists an invertible matrix
Uy € M3(Zs) such that Dy = Usdiag(1,0)Uy, and so,

ax By
Eyp) =U Ui
((Fa2) 1 Bf Us 1 0 U2t 1
0 0
a1 b b2
a(h ) ) L)
2\biz 0 0 2

with by1,b1a € Zs. Since rank((Eaz) = 1, it follows that b1y = 0 and b?; = a;.
Let
10 1 b1 O
Us =U; (0 U2) 0 1 0 EMg(Fg).
0 0 1

Clearly, Us is an invertible matrix such that ((E;;) = UsE;US for i = 1,2. Let
D, B
((E33) = Us (Bz a;) Us

with ag € Zg, By € My 1(Z3) and Dy € S3(Z2). By the facts that rank((Es3) =
1 and rank((/3) = 3, we conclude that as = 1, and so, BoBY = Ds. Let

U=Us (IQ B“') € Ms(Fy).
0 1
It is clear that U is invertible and ((E;) = UE;U? for i = 1,2, 3.

Let 7, j, k be three distinct integers satisfying 1 < 4, 7,k < 3. We denote S;; =
E;; + Ej;;. Since Cy(S;j) = Ea_pa—k, it follows from (17) that C2(¢(S;;)) =
D(¢(C5(Si5))Dt = D¢(Ey—ga—k)D' is of rank one, so rank((S;;) = 2. Let
¢(Sij) = UH;;U" with H;; € S3(Zs) being of rank two. We want to claim that
Hij = SL] Since Sz‘j—FEii—FEjj is of rank one, we get rankC(Sij —|—E“‘+Ejj) <1
Suppose that C(Slj +E” +Ejj) = 0. Then C(S’L]) = C(E”) + C(E]J) = U(E“ +
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E;;)U'. Thus, ((Sij + Eii + Exi) = U(Ej; + Exx)U" is of rank two. Since
CQ(OQ(Sij +Eii+Ekk)) = Sij+Eii+Ekka it follows from (17) that C(Sij +FE;+
Epr) = ((C2(C2(Sij+Eiit+Eyx))) = 0. Hence, ((Si;) = ((Eii)+((Ekx), and so,
C(Ekk) = C(Ej;), a contradiction. So, ((S;j+ Ei;+FEj;) = U(H;;+ Eii +E;;)U*
is of rank one. Let H;j = (hpq) € S3(Z2). Suppose hii # 0 (ie., hgp = 1).
Since H;; + Ey; + Ej; is of rank one, it follows that hy; +1 = h%,w hjj+1= h?k
and h;; = hihj,. Thus, we obtain rankH;; = 3 for every hi,hji € Zg, a
contradiction. So, we conclude that hy, = 0. Further, since H;; + Ey; + Ej; is
of rank one, it follows that h;; = h;r = 0 and (h;; +1)(hj; +1) = hfj Suppose
that h;; = 0. Since rankH;; = 2, we conclude that h;; = 1 and h;; = 1, and so,
H;j = E;; + Ej;. This leads to a contradiction because ((S;; + Ei; + Ej;) # 0.
So, we conclude that h;; = 1, and so, h;; = h;; = 0. Hence, H;; = 55, as
claimed. Consequently, we have

((A) =UAU" for all A € S5(Zs).

In view of (b), we obtain 9 (A4) = QAQ" for all A € S3(Z3) where Q = PU €
S5(Z2) is an invertible matrix. We are done. O

By Lemma 2.5, and the structural result of rank-one nonincreasing additive
maps between Hermitian matrix spaces in [9, Theorem 2.7], [10, Main Theorem,
p. 603] and [11, Theorem 2.1 and Remark 2.4], we have the following result.

Theorem 2.14. Let F be a field which possesses a proper involution ~—. Let m
and n be integers with m,n = 3. Then ¢ : Hp(F) = Hpn(F) is a compound-
commuting additive map if and only if ¥ = 0, or m = n and there exist a
nonzero field homomorphism o on F and an invertible matriz P € M, (F) with

Cpn—1(P) = puP such that
W(A) = APA°P*  for all A€ H,(F),

where \, ;i € F are nonzero scalars such that A\ = X and \"2uji = 1.
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