• Title/Summary/Keyword: Hermite polynomials

Search Result 58, Processing Time 0.023 seconds

AN EASILY CHECKING CONDITION FOR THE STAVILITY TEST OF A FAMILY OF POLYNOMIALS WITH NONLIMEARLY PERTURBED COEFFICIENTS

  • Kim, Young-Chol;Hong, Woon-Seon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.5-9
    • /
    • 1995
  • In many cases of robust stability problems, the characteristic polynomial has real coefficients which or nonlinear functions of uncertain parameters. For this set of polynomials, a new stability easily checking algorithm for reducing the conservatism of the stability bound are given. It is the new stability theorem to determine the stability region just in parameter space. Illustrative example show that the presented method has larger stability bound in uncertain parameter space than others.

  • PDF

GENERATING FUNCTIONS FOR LEGENDRE-BASED POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • Khan, N.U.;Usman, Talha;Aman, Mohd
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.217-231
    • /
    • 2017
  • In this paper, we introduce a generating function for a Legendre-based poly-Bernoulli polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. By making use of the generating function method and some functional equations mentioned in the paper, we conduct a further investigation in order to obtain some implicit summation formulae for the Legendre-based poly-Bernoulli numbers and polynomials.

Flexural-Torsional Coupled Vibration of Slewing Beams Using Various Types of Orthogonal Polynomials

  • Kapania Rakesh K.;Kim, Yong-Yook
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1790-1800
    • /
    • 2006
  • Dynamic behavior of flexural-torsional coupled vibration of rotating beams using the Rayleigh-Ritz method with orthogonal polynomials as basis functions is studied. Performance of various orthogonal polynomials is compared to each other in terms of their efficiency and accuracy in determining the required natural frequencies. Orthogonal polynomials and functions studied in the present work are: Legendre, Chebyshev, integrated Legendre, modified Duncan polynomials, the special trigonometric functions used in conjunction with Hermite cubics, and beam characteristic orthogonal polynomials. A total of 5 cases of beam boundary conditions and rotation are studied for their natural frequencies. The obtained natural frequencies and mode shapes are compared to those available in various references and the results for coupled flexural-torsional vibrations are especially compared to both previously available references and with those obtained using NASTRAN finite element package. Among all the examined orthogonal functions, Legendre orthogonal polynomials are the most efficient in overall CPU time, mainly because of ease in performing the integration required for determining the stiffness and mass matrices.

Geometrically exact initially curved Kirchhoff's planar elasto-plastic beam

  • Imamovic, Ismar;Ibrahimbegovic, Adnan;Hajdo, Emina
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.537-553
    • /
    • 2019
  • In this paper we present geometrically exact Kirchhoff's initially curved planar beam model. The theoretical formulation of the proposed model is based upon Reissner's geometrically exact beam formulation presented in classical works as a starting point, but with imposed Kirchhoff's constraint in the rotated strain measure. Such constraint imposes that shear deformation becomes negligible, and as a result, curvature depends on the second derivative of displacements. The constitutive law is plasticity with linear hardening, defined separately for axial and bending response. We construct discrete approximation by using Hermite's polynomials, for both position vector and displacements, and present the finite element arrays and details of numerical implementation. Several numerical examples are presented in order to illustrate an excellent performance of the proposed beam model.

POLYNOMIAL-FITTING INTERPOLATION RULES GENERATED BY A LINEAR FUNCTIONAL

  • Kim Kyung-Joong
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.397-407
    • /
    • 2006
  • We construct polynomial-fitting interpolation rules to agree with a function f and its first derivative f' at equally spaced nodes on the interval of interest by introducing a linear functional with which we produce systems of linear equations. We also introduce a matrix whose determinant is not zero. Such a property makes it possible to solve the linear systems and then leads to a conclusion that the rules are uniquely determined for the nodes. An example is investigated to compare the rules with Hermite interpolating polynomials.

CERTAIN INTEGRALS INVOLVING 2F1, KAMPÉDE FÉRIET FUNCTION AND SRIVASTAVA POLYNOMIALS

  • Agarwal, Praveen;Chand, Mehar;Choi, Junesang
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.343-353
    • /
    • 2016
  • A remarkably large number of integrals whose integrands are associated, in particular, with a variety of special functions, for example, the hypergeometric and generalized hypergeometric functions have been recorded. Here we aim at presenting certain (presumably) new and (potentially) useful integral formulas whose integrands are involved in a product of $_2F_1$, Srivastava polynomials, and $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ functions. The main results are derived with the help of some known definite integrals obtained earlier by Qureshi et al. [4]. Some interesting special cases of our main results are also considered.

FRACTIONAL CALCULUS FORMULAS INVOLVING $\bar{H}$-FUNCTION AND SRIVASTAVA POLYNOMIALS

  • Kumar, Dinesh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.827-844
    • /
    • 2016
  • Here, in this paper, we aim at establishing some new unified integral and differential formulas associated with the $\bar{H}$-function. Each of these formula involves a product of the $\bar{H}$-function and Srivastava polynomials with essentially arbitrary coefficients and the results are obtained in terms of two variables $\bar{H}$-function. By assigning suitably special values to these coefficients, the main results can be reduced to the corresponding integral formulas involving the classical orthogonal polynomials including, for example, Hermite, Jacobi, Legendre and Laguerre polynomials. Furthermore, the $\bar{H}$-function occurring in each of main results can be reduced, under various special cases.

OPERATIONAL CALCULUS ASSOCIATED WITH CERTAIN FAMILIES OF GENERATING FUNCTIONS

  • KHAN, REHANA;KHAN, SUBUHI
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.429-438
    • /
    • 2015
  • In this paper, we discuss how the operational calculus can be exploited to the theory of mixed generating functions. We use operational methods associated with multi-variable Hermite polynomials, Laguerre polynomials and Bessels functions to drive identities useful in electromagnetism, fluid mechanics etc. Certain special cases giving bilateral generating relations related to these special functions are also discussed.

HERMITE-TYPE EXPONENTIALLY FITTED INTERPOLATION FORMULAS USING THREE UNEQUALLY SPACED NODES

  • Kim, Kyung Joong
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.303-326
    • /
    • 2022
  • Our aim is to construct Hermite-type exponentially fitted interpolation formulas that use not only the pointwise values of an 𝜔-dependent function f but also the values of its first derivative at three unequally spaced nodes. The function f is of the form, f(x) = g1(x) cos(𝜔x) + g2(x) sin(𝜔x), x ∈ [a, b], where g1 and g2 are smooth enough to be well approximated by polynomials. To achieve such an aim, we first present Hermite-type exponentially fitted interpolation formulas IN built on the foundation using N unequally spaced nodes. Then the coefficients of IN are determined by solving a linear system, and some of the properties of these coefficients are obtained. When N is 2 or 3, some results are obtained with respect to the determinant of the coefficient matrix of the linear system which is associated with IN. For N = 3, the errors for IN are approached theoretically and they are compared numerically with the errors for other interpolation formulas.

CERTAIN INTEGRALS ASSOCIATED WITH GENERALIZED MITTAG-LEFFLER FUNCTION

  • Agarwal, Praveen;Choi, Junesang;Jain, Shilpi;Rashidi, Mohammad Mehdi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • The main objective of this paper is to establish certain unified integral formula involving the product of the generalized Mittag-Leffler type function $E^{({\gamma}_j),(l_j)}_{({\rho}_j),{\lambda}}[z_1,{\ldots},z_r]$ and the Srivastava's polynomials $S^m_n[x]$. We also show how the main result here is general by demonstrating some interesting special cases.