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POLYNOMIAL-FITTING INTERPOLATION RULES
GENERATED BY A LINEAR FUNCTIONAL

Kyung Joong Kim

ABSTRACT. We construct polynomial-fitting interpolation rules to
agree with a function f and its first derivative f’ at equally spaced
nodes on the interval of interest by introducing a linear functional
with which we produce systems of linear equations. We also in-
troduce a matrix whose determinant is not zero. Such a property
makes it possible to solve the linear systems and then leads to a
conclusion that the rules are uniquely determined for the nodes.
An example is investigated to compare the rules with Hermite in-
terpolating polynomials.

1. Introduction

In many scientific fields, a simple and convenient formula to approxi-
mately represent a function f or to reproduce a given table of numerical
values of the function may be needed. Once such a simple formula has
been obtained, it can be used in place of f or the table. In particular,
polynomials are often used for approximating continuous functions. One
reason is that there exist some polynomials to uniformly converge to the
continuous functions. This fact is guaranteed by the Stone-Weierstrass
approximation theorem [11]. The theorem says that given any func-
tion, defined and continuous on a closed and bounded interval, there
exists a polynomial that is as close to the given function as desired. An-
other important reason is that the derivative and indefinite integral of a
polynomial are easy to determine and are also polynomials. Therefore,
polynomial interpolation is usually used to provide the value of f at a
certain point in the interval of interest when the values of f at the mesh
points on the interval are assumed to be known. A good-interpolating
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polynomial needs to provide an accurate approximation over the entire
interval, not near a specific point on the interval. Lagrange or Hermite
interpolating polynomials are well known as such interpolating polyno-
mials [2].

On occasion, it may happen that the user knows not only the function
value f at the mesh points but also its derivative f’ at the same mesh
points. For example, physical problems that are position-dependent
rather than time-dependent are often described in terms of differential
equations with conditions imposed at more than one point. In particular,
the two-point boundary-value problems involving a second-order differ-
ential equation may be solved by a numerical technique which is called
a “shooting” method, by analogue to the procedure of firing objects at
a stationary target. Then the user disposes not only of the pointwise
solution but also of its first derivative. So it makes sense to search for an
evaluation of f on the basis of the whole available information because
this way the quality of the interpolating polynomials will be normally
better than before. This is why Hermite interpolating polynomials are
superior in accuracy to Lagrange interpolating polynomials.

The Hermite interpolating polynomials are usually constructed by
extending Lagrange interpolating polynomials or by using the divided
difference for more computable form [1, 2]. The existence and uniqueness
of the Hermite interpolating polynomials are easily obtained by simplify-
ing Hermite interpolation theory with multiple nodes (Chap. 3 in [10]).
In this paper, the Hermite interpolating polynomials set up at equally
spaced nodes are generated by new approach using a linear functional
with which we produce interpolation rules linearly transformed to the
Hermite interpolating polynomials. That is, we construct polynomial-
fitting interpolating rules by the linear functional which leads to the
Hermite interpolating polynomials. With this background, the paper is
organized as follows.

In Section 2, we present the form of the polynomial-fitting interpo-
lation rules involving first derivatives and make systems of linear equa-
tions from it. In Section 3, a matrix whose determinant is not zero, is
introduced to solve the linear systems. In Section 4, we compare the
obtained interpolation rules with the Hermite interpolating polynomials
and discuss some results.
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2. Polynomial-fitting interpolation rules involving first deri-
vatives

Consider a function f and its interpolation rule, denoted by I, which
involves not only pointwise values of the function but also of its deriva-
tive at equidistant nodes, viz.:

f(zo+ Nht) =~ I(t)
= oa_nf(xo— Nh)+---+a_1f(zo — h) + aof(zo)
(1) +a1f(zo+h)+---+anf(ze+ Nh)
+ hlB_nf'(zo— Nh) + -+ B-1f'(zo — h)
+ Bof'(xo) + Buf'(xo + h) + - - - + By f'(zo + Nh)]

where N is a positive integer, zq is the middle node on the interval of
interest, the other nodes on the interval are equally spaced by h and
—1 <t € 1. Note that, for each ¢ in [—1, 1}, ¢ + Nht corresponds to a
certain value in [zg — Nh,zo + Nh]. Therefore, I(t), defined on [-1, 1],
approximates the function f on the whole range of the closed interval
[0 — Nh, o + Nh] by using the function value and its first derivative at
nodes zg—Nh, ...,z0—h,x9,Zo+h, ..., 20+ Nh. For convenience, keep
taking the notations oy and B instead of ax(t) and Si(t) indicating that
oy, and B depend on t.

Based on the ideas which were introduced in [3] and then more in-
vestigated in [4, 5, 6, 7, 8], we take a linear functional L(f(z), h,C),

L(f(=),h,C)
= f(z+ Nht)
(2) —la-nf(z = Nh)+ - +a-1f(z—h) + af(z)
+onf(z+h)+ - +anf(z+ Nh)

—h[B_nf(x—Nh)+---+ B f(x~h)+ Bof'(z)
+61f (x+h)+---+ BnSf'(z+ Nh)

where C is the vector of coefficients o and [ which have to be de-
termined, C = (a—n,@—N+1,---, 0N, B—N,B-N+1,---,0n). When the
values of the function f and its first derivative f’' at the 2N + 1 nodes
are assumed to be known, our problem is to determine the values of
coefficients oy and B from the conditions

(3) Liz" 1 hC) =0 (n=1,2,...).
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By inserting each monomial f(z) = 1,z,z2,... into (2), we get

(4)

L(LhC) = 1—(a_Ny+-+a_1+ag+ai+ - +an),
L(z,h,C) = z[l-(a-ny+-+a_1+ag+oy+---+an)]+
h[Nt+(a-NN+---+a_1—a;— - —anN)

—(B-N+- B+ Bot+ Bt BN
L(z%h,C) = 2}l~(o_N+ - +taat+apt+ar+--+an)] +
2hz[Nt+ (NN + -+ a_1—a;—---—ayN)
~B-N+- B+ Bo+ bt +BN)
RY(Nt)? — (a-NN?+ -+ a1 +a1 + -+ anN?)
+2(6_NN +--+B1 =1~ = BN,

The values of L(z™,h,C) (m = 0,1,2,...) at z = 0, will be denoted by
Ly (h,C) and called moments. Then we have

Loh,C) = 1-N af — ag,
Lih,0) = h(Nt+ SN, ag(N+1-k) - LI ~ o)
(5) La(h,C) = B((N)? = 0L o (N +1—k)?
+2 50, B (N +1-4)),

or, in general, for even m > 2

L(h,C) = A™((NO™ = 3l af (N +1— k)™

© +m S By (V + 1= Byt

and for odd m > 3

L(h,C) = W((Nty™+ S, o (N +1 = k)

7
@ —m AL BN 41— k),

where

+ _ -
O = O_N-1+k T AN+1-k; Qp = O_N-1+k — ON+1-k;
(8)

B = B-N-1+k + Bnt1-k,  Bp =B-N-14k — BN+1-k-
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With the moments, (4) can be rewritten as follows:

L(l,h,C) = LO(h’C)7
L(z,h,C) = zLo(h,C)+ Li(h,C),
(9) L(z?,h,C) = x2Ly(h,C)+ 2zLy(h,C) + La(h,C),

Since L in (2) is a linear functional, it follows that, upon taking f(x) as
an expansion of power functions, f(z) = ap + a1z + a2 + - - - , we have

L(f(z),h,C) = 3 _gamL(z™, h,C)
= Lo(h,C)(ag +ayx + a2m2 + - ) +
Ll(h, C)(al + 2(12.’13 + 30,3562 +-- ) +
(10) La(h,C)(ag + 3azz + 6agz? + - )+
= Lo(h,C)f(x) + §iL1(h, O)fV (x)
+31La(h,€)f P () + - -
= Y=o 7 (1, O)f ™ (3).

We now address the problem of determining the values of the coef-
ficients ax and g such that the functional L is identically vanishing
at any z and h # 0 for as many successive terms as the number of
parameters. For such purpose it is natural to impose that

(11) Lm(h,C) =0, m=0,1,...,4N +1,

since the rule I in (1) has 4N + 2 parameters which consist of the 2N +1
coefficients o and the other 2N + 1 coefficients 3. Thus, the number
of parameters equals the number of conditions to be imposed. We now
obtain a system of 4N + 2 linear equations in oy and Gy (or a,:f and ﬂfct)
But, instead of handling the system directly to find its solution aj and
Bk, we break the linear system into two “smaller” linear systems,

(12) AX = P and BY =Q,

which are easier to handle individually. The former governs coefficients
ag, a,': and G, while the latter does «; , By and B,j. In detail, we have
(13)

1 1 -1 1.1 0 0 - 0 0
N (N-1BZ ... 22 1 0 H} H} - HL_, HL_,
Nt (N-1* ... 20 1 0 HZ H} - H}_, H3 |
A= ,
NAN (NN 24N 1 o @2V OHIN .. H3N, HINY,
= +  aF + - 4= —\T
(14) X= (of ag -+ af a By By -+ By)
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and
(15) P= (1 (Nt)* (Np)* --- (Ny*M)T,
where

H] = -29(N - k)* 1 (k=0,1,...,N-land n=1,2,...,2N).

Likewise,
(16)
FR’ F]Qf—l F§ Fl0 1 1 1 1 1
Fy Fy_, -~ F F. T} T} . Tk, Thi_, 0
Fy Fa_y, - FZ F} T3 T? e TR, TR 0
B= ,
FCORYL o EYORY TN mY o THG TEY o
(17) Y= (o] o - an BF BF - Bt BT
and
(18) Q= (Nt (Nt)® (Nt)® ... (N)V+HT
where

Fl=-m?* (1<m < Nand 0<pu<2N)
and
T!=2n+1)(N—-k)* (0<k<N-1and 1<n<2N).

The existence of the unique solution of each linear system, AX = P or
BY = Q, is investigated next section. This will be done by first newly
constructing a matrix whose special cases involve the above matrices A
and B and then by showing that its determinant is never zero.

3. Determinant
We now improve the techniques that are considered in [9] to con-

struct classical integration formulas. Assume that a and b are positive
integers. For distinct real number w;, let W; denote the column vector

(w?,w;’“, e ,w;‘ﬂk, e ,w?+2(2b—1))T. Define a 2b x 2b matrix W as
(19) W = (Wi, Wa, ..., Wy, Wy, Wy, ..., W}),

where the superscript on W; means the first derivative of W; with respect
to w; (j = 1,2,...,b), that is W] = dW,/dw;. Then, the matrix is
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written as

(20)
w§ wy aws™! aw?™?

'Lui""'2 cee w§+2 (a + 2)wit? e (a + 2)wg+1
W = wo 2k we 2k (a + 2k)wd+2k—1 at2k~1 s
7 5 a + 2k)w? s (a+2k)wy
w;1+2(2b-—1) o w§+2(2b—1) Wy .. W
where

Wi = (a+2(2b— )wf PP D e =12, b),

For the matrix W, we have

THEOREM 1. The determinant of the matrix W is of the form,

b
(21) det(W) = K [Jwi** [[(w? — wi)*,

]:1 1>]
where K is a constant.

Proor. Consider det(W) as a polynomial P(w;) in w; and expand
det(W) using both the first column and the (b + 1)th column of W.
Then, the lowest degree term in P(wi) has degree 2a + 1. That is, we
have P(w;) = wi** 1 P(w;), where P(w,) is a polynomial in w; with co-
efficients consisting of polynomials in wo, . .., ws. Moreover, w; and —w;
(1 = 2,3,...,b) are zeros of P(w;) with multiplicity four, respectively.
Such results come from the fact that the determinant of a matrix with
two .equal columns is zero. Therefore

b
(22) witt [ (w? - w))?
=2

is a factor of det(WW). Repeat the above procedure to det(W) for each
w; and then get other factors of it,

b
(23) wlett H (w? —w})* forj=2,3,...,b
i=j+1
As a result, the determinant, det(W), has a factor

b

(24) . H wjzaﬂ H (w]2 — w?)*

j=1 i=j+1
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so that its degree in all w; is at least 2ab + 4b% — 3b because
(25)
b

> (2a+1+8(b—j)) = (2a+1)b+86° -
j=1

8b(L+D) _ oup 4+ 452 — 30,

On the other hand, a direct calculation of the determinant of W easily
shows that the degree of det(W) in all w; is exactly the same as (25).
For example, by taking w; out of each column W; between the first
column and the bth column of the det(W), the degree of det(W) in all
w; becomes '

2b—1
(26) b+ > (a+2k—1) = 2ab+4b* — 3b.

k=0
Therefore, we finally have

b b
(27) det(W) = K [[w?*" [] (w?—wd),
j=1 i=j+1

where K is a constant which is independent of wy,ws, ..., ws.

The fact that the determinant of A in (13) is not zero, can be easily
obtained by Theorem 1 if we expand det(A) according to the (N + 1)th
column of the matrix A. From the expansion of it, only one minor whose
size is 2N x 2N survives while other minors all vanish. This nonvanishing
minor is exactly the same as the determinant of the matrix W when
a=2b=Nand wj = N +1—jin the matrix W. Likewise, expand
det(B) according to the (2N + 1)th column of the matrix B to get the
same conclusion that det(B) is not zero. In this case, substitute a = 3,
b= N and w; = N 4+ 1— j into the matrix W. Hence each linear
system has the unique solution, respectively. It implies that all the
coefficients aj and B of the rule (1) can be determined by algebraically
manipulating the relations given in (8).

4. Discussion

In this section, we will discuss the relation between the Hermite inter-
polating polynomials and the polynomial-fitting interpolation rule I(t)
given in (1). By using change of variables, the Hermite interpolating
polynomials which are constructed using both function value f and its
first derivative f’ at equally spaced nodes, can be linearly transformed
into the polynomial-fitting interpolation rules. For easy understanding,



Polynomial-fitting interpolation rules generated by a linear functional 405

consider a Hermite interpolating polynomial, denoted by Hs(z), of de-
gree at most five agreeing with f and f’ at three nodes zg — h, 2y and
2o + h. Then Hs(x) is written as
(28)
Hs(x)
= f(zo — h)Hzp(x) + flmo)Hzi(z) + f(zo+ h)Hapa(z)
+ fl(zo — h)Hzpo(z) + f(zo)Hoi(z) + f'(zo+ h)Ha2(),

where

Hyo(z) = (1-2(z— (zo~ h))Lyg(zo — h)) L3 o(x),
Hyi(z) = (1—2( a:—:cOL 1(zo) L21( ),
Hyp(z) = (1—2(z— (zo + h)L ’2,2(1150 +h)) L3 5(z)
Hyo(z) = (z—(z0—h))Lig(w),
(29) I}rZ,l(x) = (z— $0)L2,1( ),
Hyo(z) = (x—(zo+h)) L%,Z(m),
Loo(z) = gz=(z—zo)(z — (zo+h)),
Loi(z) = —ps(z— (z0— )z = (z0 +h)),
Loa(a) = g(e— (20— h)(x— o).
As might be expected, it is easily checked that

(30)
Hs(xo — h) = f(zo — h), Hs(wo) = f(xo), Hs(zo+h)= f(zo+h),
H{(zo — h) = f'(xo — h), Hg(xo) = f'(z0), Hi(zo+h) = f'(zo+ h).

By using the change of variables,
(31) T = x9 + ht,

the Hermite interpolating polynomial Hs(z), defined on [z¢ — h, z¢ + R,
is transformed into a t-dependent function as follows:
(32)
Hs(z)
= Hs(l‘() + ht)
= 1t2(4 + 3t)(t — 1)2 f(:cg —h)+ (t+1)2(t — 1) f(x0)
+3t%(4 — 3t)(t + ) f(zo+h) + 3ht2(t + 1)(t — 1)%f'(z0 — h)
Fh(t + 1)2(t — 12 f(@o) + ThE2(E — 1)(t+ 1)2F (0 + h),

where t is in [—1, 1]. This function is exactly the same as the polynomial-
fitting interpolation rule I which is obtained by (1) after determining
the coeflicients corresponding to f and f’ at three nodes zg — h, z¢ and
xo + h. Moreover, the same results as (30) can be obtained from (32).
Therefore the t-dependent function is expected to become the Hermite
interpolating polynomial (28) without performing the change of variables
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because of the existence and uniqueness of the Hermite interpolating
polynomial. In detail, note that, in this case, we have

11 0 of 1
33 A=|(10 -2 ], X=1 ap |, P= ¢

10 —4 By ¢t
and

-1 11 ay t
3) B={-130|, Y=|g81, @Q=|1¢

-1 50 Bo td

After solving the associated linear systems,
AX = P and BY = (),

all o and B are computed from Egs. (8). Thus, for N = 1 we obtain
the form of the rule I which is exactly the same as (32). This way the
Hermite interpolating polynomial is linearly transformed to the interpo-
lation rule I. Likewise, the rule I can be also linearly transformed to the
Hermite interpolating polynomial.

In order to get the t-dependent interpolation rule I, we use matrix
computations and simple algebraic calculations with Eqgs. (8) through
which the rule I produces the Hermite interpolating polynomial.
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