• Title/Summary/Keyword: Hepatoma cells

Search Result 255, Processing Time 0.029 seconds

FoxO3a mediates transforming growth factor-β1-induced apoptosis in FaO rat hepatoma cells

  • Kim, Byung-Chul
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.728-732
    • /
    • 2008
  • FoxO3a is a member of the forkhead box class O (FoxO) transcription factor family and an important regulator of apoptosis. This work aimed to elucidate the involvement of FoxO3a in transforming growth factor-${\beta}1$(TGF-${\beta}1$)-induced apoptosis in FaO rat hepatoma cells. TGF-${\beta}1$ caused a time-dependent activation of FoxO3a and a subsequent increase in FoxO response-element-containing luciferase reporter activity, which was Akt-sensitive. The FaO cells stably transfected with a wild type FoxO3a were more susceptible to the formation of apoptotic bodies, populations of sub-G1 apoptotic cells, and collapse of the mitochondrial-membrane potential triggered by TGF-${\beta}1$. In contrast, transfection with small-interfering RNA (siRNA) oligonucleotide specific for FoxO3a significantly inhibited caspase activation in FaO cells treated with TGF-${\beta}1$. It thus appears that FoxO3a plays a crucial mediatory role in the TGF-${\beta}1$ signaling pathway leading to apoptosis.

Radiation-Induced CXCL12 Upregulation via Histone Modification at the Promoter in the Tumor Microenvironment of Hepatocellular Carcinoma

  • Ahn, Hak Jun;Hwang, Soon Young;Nguyen, Ngoc Hoan;Lee, Ik Jae;Lee, Eun Jeong;Seong, Jinsil;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.530-545
    • /
    • 2019
  • Tumor cells can vary epigenetically during ionizing irradiation (IR) treatment. These epigenetic variegations can influence IR response and shape tumor aggressiveness. However, epigenetic disturbance of histones after IR, implicating in IR responsiveness, has been elusive. Here, we investigate whether altered histone modification after IR can influence radiation responsiveness. The oncogenic CXCL12 mRNA and protein were more highly expressed in residual cancer cells from a hepatoma heterotopic murine tumor microenvironment and coculture of human hepatoma Huh7 and normal IMR90 cells after radiation. H3K4 methylation was also enriched and H3K9 methylation was decreased at its promoter region. Accordingly, invasiveness and the subpopulation of aggressive $CD133^+/CD24^-$ cells increased after IR. Histone demethylase inhibitor IOX1 attenuated CXCL12 expression and the malignant subpopulation, suggesting that responses to IR can be partially mediated via histone modifications. Taken together, radiation-induced histone alterations at the CXCL12 promoter in hepatoma cells are linked to CXCL12 upregulation and increased aggressiveness in the tumor microenvironment.

Lovastatin Induces Apoptotic Cell Death by Activation of Intracellular Ca2+ Signal in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.137-144
    • /
    • 2007
  • Although lovastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase, has been shown to have anti-cancer actions, the effect on human hepatoma cells was not investigated. Moreover, the exact mechanism of this action is not fully understood. In this study we investigated the mechanism by which lovastatin induces apoptosis using HepG2 human hepatoblastoma cells. Lovastatin induced apoptotic cell death in a dose-dependent manner in the cells, assessed by the flow cytometric analysis. Treatment with mevalonic acid, a precursor of cholesterol, did not significantly suppress the lovastatin-induced apoptosis. Lovastatin induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration. Treatment with EGTA, an extracellular $Ca^{2+}$ chelator did not significantly alter the lovastatin-induced intracellular $Ca^{2+}$ increase and apoptosis, whereas intracellular $Ca^{2+}$ reduction with BAPTA/AM and intracellular $Ca^{2+}$ release blockers (dantrolene and TMB-8) completely blocked these actions of lovastatin. In addition, the lovastatin-induced apoptosis was significantly reduced by a calpain inhibitor, a broad spectrum caspase inhibitor z-VAD-fmk and inhibitors specific for caspase-9 and caspase-3 (z-LEHD-fmk and z-DEVD-fmk, respectively), but not by an inhibitor specific for caspase-8 (z-IETD-fmk). Collectively, these results suggest that lovastatin induced apoptosis of HepG2 hepatoma cells through intracellular $Ca^{2+}$ release and calpain activation, leading to triggering mitochondrial apoptotic pathway. These results further suggest that lovastatin may be valuable for the therapeutic management of human hepatoma.

Celecoxib-mediated activation of endoplasmic reticulum stress induces de novo ceramide biosynthesis and apoptosis in hepatoma HepG2 cells

  • Maeng, Hyo Jin;Song, Jae-Hwi;Kim, Goon-Tae;Song, Yoo-Jeong;Lee, Kangpa;Kim, Jae-Young;Park, Tae-Sik
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.144-149
    • /
    • 2017
  • Ceramides are the major sphingolipid metabolites involved in cell survival and apoptosis. When HepG2 hepatoma cells were treated with celecoxib, the expression of the genes in de novo sphingolipid biosynthesis and sphingomyelinase pathway was upregulated and cellular ceramide was elevated. In addition, celecoxib induced endoplasmic reticulum (ER) stress in a time-dependent manner. SPTLC2, a subunit of serine palmitoyltransferase, was overexpressed by adenovirus. Adenoviral overexpression of SPTLC2 (AdSPTLC2) decreased cell viability of HEK293 and HepG2 cells. In addition, AdSPTLC2 induced apoptosis via the caspase-dependent apoptotic pathway and elevated cellular ceramide, sphingoid bases, and dihydroceramide. However, overexpression of SPTLC2 did not induce ER stress. Collectively, celecoxib activates de novo sphingolipid biosynthesis and the combined effects of elevated ceramide and transcriptional activation of ER stress induce apoptosis. However, activation of de novo sphingolipid biosynthesis does not activate ER stress in hepatoma cells and is distinct from the celecoxib-mediated activation of ER stress.

Analysis of a Sphingosine 1-phosphate Receptor $hS1P_3$ in Rat Hepatoma Cells

  • Im, Dong-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.139-142
    • /
    • 2002
  • To examine intracellular signaling of human $S1P_3\;(hS1P_3),$ a sphingosine 1-phosphate (S1P) receptor in plasma membrane, $hS1P_3$ DNA was transfected into RH7777 rat hepatoma cell line, and the inhibition of forskolin-induced cAMP accumulation and activation of MAP kinases by S1P were tested. In $hS1P_3$ transformants, S1P inhibited forskolin-induced activation of adenylyl cyclase activity by about 80% and activated MAP kinases in dose-dependent and pertussis-toxin (PTX) sensitive manners. In oocytes expressing $hS1P_3$ receptor, S1P evoked $Cl^-$ conductance. These data suggested that PTX-sensitive G proteins are involved in $hS1P_3-mediated$ signaling, especially the positive action of S1P in cell proliferation. The potential advantages of rat hepatoma cells for the research of sphingosine 1-phosphate receptor are discussed.

The Regulatory Effects of Radiation and Histone Deacetylase Inhibitor on Liver Cancer Cell Cycle

  • Lee, Sang Ho;Han, Chang Hee;Kang, Su Man;Park, Cheol Woo
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.74-77
    • /
    • 2012
  • Radiation has been an effective tool for treating cancer for a long time. Radiation therapy induces DNA damage within cancer cells and destroys their ability to reproduce. Radiation therapy is often combined with other treatments, like surgery and chemotherapy. Here, we describe the effects of radiation and histone deacetylase inhibitor, Trichostain A, on cell cycle regulation in hepatoma cells. The combinatorial treatment of radiation and Trichostain A induced cell cycle arrest and thereby increasing the hepatoma cell death. Furthermore, the regulatory effects of radiation and Trichostatin A on cell cycle applied in cell type specifically. These results suggest that the treatment of radiation and Trichostatin A may play a central role in hepatoma cell death and might be a good remedy to improve the efficiency of radiation therapy.

p53 is not necessary for nuclear translocation of GAPDH during NO-induced apoptosis

  • Kim, Jum-Ji;Lee, Mi-Young
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.782-786
    • /
    • 2011
  • Aberrant GAPDH expression following S-nitrosoglutathione (GSNO) treatment was compared in HepG2 cells, which express functional p53, and Hep3B cells, which lack functional p53. The results of Western blotting and fluorescent immunocytochemistry revealed that nuclear translocation and accumulation of GAPDH occur in both HepG2 and Hep3B cells. This finding suggests that p53 may not be necessary for the GSNO-induced translocation of GAPDH to the nucleus during apoptotic cell death in hepatoma cells.

Synergistic Effects of Ionizing Radiation and Mercury Chloride on Cell Viability in Fish Hepatoma Cells (이온화 방사선 및 염화수은 처리에 따른 어류 간암세포의 생존능 평가)

  • Han, Min;Hyun, Kyung-Man;Nili, Mohammad;Hwang, In-Young;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.2
    • /
    • pp.140-145
    • /
    • 2009
  • All organisms are being exposed to harmful factors present in the environmental. The combined action of various factors is a distinguishing feature of modern life. An interaction between two chemicals is considered as synergistic when the effect produced is greater than the sum of the two single responses. The biological effects due to the combined action of ionizing radiation with the other factor are hard to estimate and predict in advance. In the current study, we investigated the synergistic effects between ionizing and $HgCl_2$ using fish hepatoma cells (PLHC-1 cells). The results showed a dramatic decrease of cell viability after simultaneous treatment of PLHC-1 cells with ionizing radiation and $HgCl_2$. Neiither of the two had any cytotoxic effect when treated alone. The cytotoxicity of ionizing radiation was enhanced in the presence of $HgCl_2$. The synergistic effects were observed after exposure of the PLHC-1 cells to ionizing radiation combined with $HgCl_2$. The synergistic interaction was due to an increase of irreversibly damaged cells after the combined exposure. Analysis of the extent of synergistic interaction enables to make quantitative estimation of irreversibly damaged cells after the combined exposure. The present study suggests that PLHC-1 cells can serve as rapid screening tools for detecting the toxicity of harmful factors.

Induction of Cancer Cell Apoptosis by the Extract of Capsicum annuum L. var. angulosum Mill Sorted According to the Parts in Hepatoma Cells and MCF-7 Cells (고추 부위별추출물에 의한 종양세포의 세포사유도 - Hepatoma 세포와 MCE-7 세포 -)

  • 정용자
    • YAKHAK HOEJI
    • /
    • v.47 no.2
    • /
    • pp.57-68
    • /
    • 2003
  • Under the active search for biologically active novel agents for cancer prevention and treatment, some agents have been found from plants which are easily available. Our previous research on them revealed that C. annuum L. var. angulosum Mill have high antiproliferating effect on cancer cells. However, it has not been known whether the anticancer efficacy is different according to each part of C. annuum L. var. angulosum Mill or whether it can be changed by timing of harvest or solvent for extraction. Thus we compared the efficacy of each part of C. annuum L. var. angulosum Mill and assessed how much difference in the efficacy can be made according to the time of harvest or solvents for extraction. We observed the morphologic change and apoptosis 48 hr after treatment with the extract of each part of C. annuum L. var. angulosum Mill in MCF-7 mammary gland adenocarcinoma cells and human hepatoma cells. We also counted cancer cells by trypan blue method and MTT method to check the cytotoxicity. The leaf extract showed the highest anticancer effect among all the parts of C. annuum L. var. angulosum Mill; 50% and 70% reduction in the number of cancer cells was observed at 25 $\mu\textrm{g}$/mι and 50 $\mu\textrm{g}$/mι, respectively. It was more than 2 times as potent as 5-fluorouracil (5-FU). We found chromosomal fragmentation, clumping, and destuction by PI staining, and DNA fragmentation by electrophoresis. In conclusion, this study suggests that leaf extraction using water as solvent has the highest antiproliferative and apoptotic activity in cancer cells compared with other parts of extraction.

Cytotoxic Activities and Antioxidative Activities Against Liver Cancer Cell of Albizzia root (합환근의 항산화효과와 간암세포에 대한 세포독성)

  • 강병수;이갑득
    • Biomolecules & Therapeutics
    • /
    • v.10 no.4
    • /
    • pp.287-292
    • /
    • 2002
  • To find new inhibitory effects from oriental drugs, Albizziae root was extracted in methanol and the extracted was stepwisely fractionated by hexane, chloroform, ethylacetate, butanol and water. In cytotoxic effect of Albizziae root fractions against cancer cell lines including human hepatoma cells(HepG2) were investigated. Expecially the butanol fraction exhibited a inhibition effects on the growth of human hepatoma cells(HepG2). It inhibited of HepG2 cells with the value of IC50. The activities of qutathione after B(a)P treatment were markedly decreased than control, but those levels were increased by the treatment of Albizziae root methanol fraction. The activity of glutathione-S-transferase after B(a)P treatment were markedly decreased than control, but those levels were increased by the treatment of Albizziae root methanol traction. Induction of phase II enzymes is a major mechanism of chemoprevention. The induction levels of quinone reductase(QR) activity in cultured murine hepatoma(Hepa IcIc7)cell by methanol extract of Albizziae root were measured. Among the tested tractions, the extracts of butanol were found to induce QR activities over 2.8 fold than control. These results suggest that Albizziae root has chemopreventive Potential by inducing QR activities and GST levels and increasing GSH