Browse > Article

Lovastatin Induces Apoptotic Cell Death by Activation of Intracellular Ca2+ Signal in HepG2 Human Hepatoma Cells  

Lee, Yong-Soo (College of Pharmacy, Duksung Women's University)
Publication Information
Biomolecules & Therapeutics / v.15, no.3, 2007 , pp. 137-144 More about this Journal
Although lovastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase, has been shown to have anti-cancer actions, the effect on human hepatoma cells was not investigated. Moreover, the exact mechanism of this action is not fully understood. In this study we investigated the mechanism by which lovastatin induces apoptosis using HepG2 human hepatoblastoma cells. Lovastatin induced apoptotic cell death in a dose-dependent manner in the cells, assessed by the flow cytometric analysis. Treatment with mevalonic acid, a precursor of cholesterol, did not significantly suppress the lovastatin-induced apoptosis. Lovastatin induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration. Treatment with EGTA, an extracellular $Ca^{2+}$ chelator did not significantly alter the lovastatin-induced intracellular $Ca^{2+}$ increase and apoptosis, whereas intracellular $Ca^{2+}$ reduction with BAPTA/AM and intracellular $Ca^{2+}$ release blockers (dantrolene and TMB-8) completely blocked these actions of lovastatin. In addition, the lovastatin-induced apoptosis was significantly reduced by a calpain inhibitor, a broad spectrum caspase inhibitor z-VAD-fmk and inhibitors specific for caspase-9 and caspase-3 (z-LEHD-fmk and z-DEVD-fmk, respectively), but not by an inhibitor specific for caspase-8 (z-IETD-fmk). Collectively, these results suggest that lovastatin induced apoptosis of HepG2 hepatoma cells through intracellular $Ca^{2+}$ release and calpain activation, leading to triggering mitochondrial apoptotic pathway. These results further suggest that lovastatin may be valuable for the therapeutic management of human hepatoma.
Lovastatin; apoptosis; $Ca^{2+}$ signal; calpain; mitochondrial pathway; HepG2 cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mo, H. and Elson, C. E. (2004). Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp. Biol. Med. 229, 567-585   DOI
2 Borner, M. M., Myers, C. E., Sartor, O., Sei, Y., Toko, T., Trepel, J. B. and Schneider, E. (1995). Drug-induced apoptosis is not necessarily dependent on macromolecular synthesis or proliferation in the p53-negative human prostate cancer cell line PC-3. Cancer Res. 55, 2122-2128
3 Adams, J. M. and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326   DOI   ScienceOn
4 Alegret. M. and Silvestre, J. S. (2006). Pleiotropic effects of statins and related pharmacological experimental approaches. Methods Find. Exp. Clin. Pharmacol. 28, 627-656   DOI
5 Alonso, D. F., Farina, H. G., Skilton, G., Gabri, M. R., de Lorenzo, M. S. and Gomez, D. E. (1998). Reduction of mouse mammary tumor formation and metastasis by lovastatin, an inhibitor of the mevalonate pathway of cholesterol synthesis. Breast Cancer Res. Treat. 50, 83-93   DOI   ScienceOn
6 Bombeli, T., Karsan, A., Tait, J. F. and Harlan, J. M. (1997). Apoptotic vascular endothelial cells become procoagulant. Blood 89, 2429-2442
7 Broitman, S. A., Wilkinson, J. T., Cerda, S and Branch, S. K. (1996). Effects of monoterpenes and mevinolin on murine colon tumor CT-26 in vitro and its hepatic 'metastases' in vivo. Adv. Exp. Med. Biol. 401, 111-130   DOI
8 Chan, K. K., Oza, A. M. and Siu, L. L. (2003). The statins as anticancer agents. Clin. Cancer Res. 9, 10-19
9 Brower, V. (2003). Of cancer and cholesterol: studies elucidate anticancer mechanisms of statins. J. Natl. Cancer Inst. 95, 844-846   DOI   ScienceOn
10 Buhaescu, I. and Izzedine, H. (2007). Mevalonate pathway: a review of clinical and therapeutical implications. Clin. Biochem. 40, 575-584   DOI   ScienceOn
11 Crompton, N. E. (1998) Programmed cellular response in radiation oncology. Acta Oncol. 37, 1-4   DOI
12 Dalenc, F., Giamarchi, C., Petit, M., Poirot, M., Favre, G. and Faye, J. C. (2005). Farnesyl-transferase inhibitor R115,777 enhances tamoxifen inhibition of MCF-7 cell growth through estrogen receptor dependent and independent pathways. Breast Cancer Res. 7, R1159-R1167   DOI   ScienceOn
13 Ehrlich, B. E., Kaftan, E., Bezprozvannaya, S., and Bezprozvanny, I. (1994). The pharmacology of intracellular $Ca^{2+}$-release channels. Trends Pharmacol. Sci. 15, 145-149   DOI   ScienceOn
14 Farina, H. G., Bublik, D. R., Alonso, D. F. and Gomez, D. E. (2002). Lovastatin alters cytoskeleton organization and inhibits experimental metastasis of mammary carcinoma cells. Clin. Exp. Metastasis 19, 551-559   DOI
15 Fernndez, C., Lobo, M., Gmez-Coronado, D. and Lasuncin, M. A. (2004). Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation. Exp. Cell Res. 300, 109-120   DOI   ScienceOn
16 Gogvadze, V. and Orrenius S. (2006). Mitochondrial regulation of apoptotic cell death. Chem. Biol. Interact. 163, 4-14   DOI   ScienceOn
17 Grynkiewicz, G., Poene, M. and Tsien, R. Y. (1985). A new generation of $Ca^{2+}$ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440-3450
18 Goldstein, J. L. and Brown, M. S. (1990). Regulation of the mevalonate pathway. Nature 343, 425-430   DOI   ScienceOn
19 Goll, D. E., Thompson, V. F., Li, H., Wei. W. and Cong, J. (2003). The calpain system. Physiol. Rev. 83, 731-801   DOI
20 Gray-Bablin, J., Rao, S. and Keyomarsi, K. (1997). Lovastatin induction of cyclin-dependent kinase inhibitors in human breast cells occurs in a cell cycle-independent fashion. Cancer Res. 57, 604-609
21 Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature 407, 770-776   DOI   ScienceOn
22 Hindler, K., Cleeland, C. S, Rivera, E. and Collard, C. D. (2006). The role of statins in cancer therapy. Oncologist 11, 306-315   DOI   ScienceOn
23 Inano, H., Suzuki, K., Onoda, M. and Wakabayashi, K. (1997). Anti-carcinogenic activity of simvastatin during the promotion phase of radiation-induced mammary tumorigenesis of rats. Carcinogenesis 18, 1723-1727   DOI   ScienceOn
24 Jani, J. P., Specht, S., Stemmler, N., Singh, S. V., Gupta, V. and Katoh, A. (1993). Metastasis of B16F10 mouse melanoma inhibited by lovastatin, an inhibitor of cholesterol biosynthesis. Invasion Metastasis 13, 314-324
25 Jurgensmeier, J., Xie, Z,. Deveraux, Q., Ellerby, L., Bredesen, D. and Reed, J. (1998). Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl Acad. Sci. USA 95, 4997-5002   DOI   ScienceOn
26 Kidd, V. J. (1998). Proteolytic activities that mediate apoptosis. Annu. Rev. Physiol. 60, 533-573   DOI   ScienceOn
27 Kamesaki, H. (1998). Mechanisms involved in chemotherapyinduced apoptosis and their implications in cancer chemotherapy. Int. J. Hematol. 68, 29-43   DOI   ScienceOn
28 Kastan, M. B., Canman, C. E. and Leonard, C. J. (1995). P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev. 14, 3-15   DOI
29 Keyomarsi, K., Sandoval, L., Band, V. and Pardee, B. (1991). Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res. 51, 3602-3609
30 Kornblau, S. M. (1998) The role of apoptosis in the pathogenesis, prognosis, and therapy of hematologic malignancies. Leukemia 12, S41-46
31 Koyuturk, M., Ersoz, M. and Altiok, N. (2004). Simvastatin induces proliferation inhibition and apoptosis in C6 glioma cells via c-jun N-terminal kinase. Neurosci. Lett. 370, 212-217   DOI   ScienceOn
32 Luo, X., Budihardjo, I., Zuo, H., Slaughter, C. and Wang, X. (1998). Bid, a $Bcl_{2}$ interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptor. Cell 94, 481-490   DOI   ScienceOn
33 Marcelli, M., Cunningham, G. R., Haidacher, S. J., Padayatty, S. J., Sturgis, L., Kagan, C. and Denner, L. (1998). Caspase-7 is activated during lovastatin-induced apoptosis of the prostate cancer cell line LNCaP. Cancer Res. 58, 76-83
34 McConkey, DJ. and Orrenius, S. (1997). The role of calcium in the regulation of apoptosis. Biochem. Biophys. Res. Commun. 239, 357-366   DOI   ScienceOn
35 Matar, P., Rozados, V. R., Roggero, EA. and Scharovsky, O. G. (1998). Lovastatin inhibits tumor growth and metastasis development of a rat fibrosarcoma. Cancer Biother. Radiopharm. 13, 387-393   DOI   ScienceOn
36 McCollum, A. T., Nasr, P. and Estus, S. (2002). Calpain activates caspase-3 during UV-induced neuronal death but only calpain is necessary for death. J. Neurochem. 82, 1208-1220   DOI   ScienceOn
37 McConkey, D. J. and Orrenius, S. (1996). The role of calcium in the regulation of apoptosis. J. Leukoc. Biol. 59, 775-783   DOI
38 McTaggart, S. J. (2006). Isoprenylated proteins. Cell. Mol. Life Sci. 63, 255-267   DOI
39 Munaron, L., Antoniotti, S., Pla, A. F. and Lovisolo, D. (2004). Blocking $Ca^{2+}$ entry: a way to control cell proliferation. Curr. Med. Chem. 12, 1533-1543
40 Mutoh, T., Kumano, T., Nakagawa, H. and Kuriyama, M. (1999). Role of tyrosine phosphorylation of phospholipase C $\gamma$1 in the signaling pathway of HMG-CoA reductase inhibitor-induced cell death of L6 myoblasts. FEBS Lett. 446, 91-94   DOI   ScienceOn
41 Nath, R., Raser, K. J., Stafford, D., Hajimohammadreza, I., Posner, A., Allen, H., Talanian, R. V., Yuen, P., Gilbertsen. R. B. and Wang, K. K. (1996). Non-erythroid $\alpha$-spectrin breakdown by calpain and interleukin 1$\beta$-converting-enzyme-like protease( s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem. J. 319, 683-690   DOI
42 Shellman, Y. G., Ribble, D., Miller, L., Gendall, J., Vanbuskirk, K., Kelly, D., Norris, D. A. and Dellavalle, R. P. (2005). Lovastatin-induced apoptosis in human melanoma cell lines. Melanoma Res. 15, 83-89   DOI   ScienceOn
43 Poynter, J. N., Gruber, S. B., Higgins, P. D., Almog, R., Bonner, J. D. and Rennert, H. S. (2005) Statins and the risk of colorectal cancer. N. Engl. J. Med. 352, 2184-2192   DOI   ScienceOn
44 Rao, S., Lowe, M., Herliczek, T. W. and Keyomarsi, K. (1998). Lovastatin-mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene 17, 2393-2402   DOI
45 Kozar, K., Kaminski, R., Legat, M., Kopec, M., Nowis, D., Skierski, J. S., Koronkiewicz, M., Jakobisiak, M. and Golab, J. (2004). Cerivastatin demonstrates enhanced antitumor activity against human breast cancer cell lines when used in combination with doxorubicin or cisplatin. Int. J. Oncol. 24, 1149-1
46 Shibata, M. A., Ito, Y., Morimoto, J. and Otsuki, Y. (2004). Lovastatin inhibits tumor growth and lung metastasis in mouse mammary carcinoma model: a p53-independent mitochondrialmediated apoptotic mechanism. Carcinogenesis 25, 1887-1898   DOI   ScienceOn
47 Shibata, M. A., Kavanaugh, C., Shibata, E., Abe, H., Nguyen, P., Otsuki, Y., Trepel, J. B. and Green, J. E. (2003). Comparative effects of lovastatin on mammary and prostate oncogenesis in transgenic mouse models. Carcinogenesis 24, 453-459   DOI   ScienceOn
48 Molinari, M. and Carafoli, E. (1997). Calpain: a cytosolic proteinase active at the membranes. J. Membr. Biol. 156, 1-8   DOI
49 Muck, A. O, Seeger, H. and Wallwiener, D. (2004). Inhibitory effect of statins on the proliferation of human breast cancer cells. Int. J. Clin. Pharmacol. Ther. 42, 695-700   DOI
50 Saito, M., Korsmeyer, S. J. and Schlesinger, P. H. (2000). BAXdependent transport of cytochrome c reconstituted in pure liposomes. Nature Cell Biol. 2, 553-555   DOI   ScienceOn
51 Schulte-Hermann, R., Bursch, W., Low-Baselli, A., Wagner, A. and Grasl-Kraupp, B. (1997). Apoptosis in the liver and its role in hepatocarcinogenesis. Cell. Biol. Toxicol. 13, 339-348   DOI   ScienceOn
52 Shimizu, S., Narita, M. and Tsujimoto, Y. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483-487   DOI   ScienceOn
53 Squier, M. K., Miller, A. C., Malkinson, A. M. and Cohen, J, J. (1994). Calpain activation in apoptosis. J. Cell Physiol. 159, 229-237   DOI   ScienceOn
54 Taylor, J. M. and Simpson, R. U. (1992). Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse. Cancer Res. 52, 2413-2418
55 van de Donk, N. W., Bloem, A. C., van der Spek, E. and Lokhorst, H. M. (2006). New treatment strategies for multiple myeloma by targeting BCL-2 and the mevalonate pathway. Curr. Pharm. Des. 12, 327-340   DOI   ScienceOn
56 van de Loosdrecht, A. A., Nennie, E., Ossenkoppele, G. J., Beelen, R. H. and Langenhuijsen, M. M. (1991). Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric MTT assay. A methodological study. J. Immunol. Methods 141, 15-22   DOI   ScienceOn
57 Wang, K., Nath, R., Raser, K. J. and Hajimohammadreza, I. (1996). Maitotoxin induces calpain activation in SH-SY5Y neuroblastoma cells and cerebrocortical cultures. Biochem. Biophys. 331, 208-214   DOI   ScienceOn
58 Yoshida, J., Ishibashi, T. and Nishio, M. (2003). Antiproliferative effect of $Ca^{2+}$ channel blockers on human epidermoid carcinoma A431 cells. Eur. J. Pharmacol. 472, 23-31   DOI   ScienceOn
59 Wood, D. E. and Newcomb, E.W. (1999). Caspase-dependent activation of calpain during drug-induced apoptosis. J. Biol. Chem. 274, 8309-8315   DOI   ScienceOn
60 Wood, D. E., Thomas, A., Devi, L. A., Berman, Y., Beavis, R. C., Reed, J. C. and Newcomb, E. W. (1998). Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 17, 1069-1078   DOI