• Title/Summary/Keyword: Hepatocyte-derived cell

Search Result 35, Processing Time 0.034 seconds

Hepatogenic Potential of Umbilical Cord Derived-Stem Cells and Human Amnion Derived-Stem Cells (사람의 제대 및 양막유래 줄기세포의 간세포로의 분화)

  • Kim, Ji-Young;Lee, Yoon-Jung;Park, Se-Ah;Kang, Hyun-Mi;Kim, Kyung-Sik;Cho, Dong-Jae;Kim, Hae-Kwon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.4
    • /
    • pp.247-265
    • /
    • 2008
  • Objectives: Many types of liver diseases can damage regenerative potential of mature hepatocytes, hepatic progenitor cells or oval cells. In such cases, a stem cell-based therapy can be an alternative therapeutic option. We examined whether human amnion-derived mesenchymal stem cells (HAM) and human umbilical cord-derived stem cells (HUC) could differentiate into hepatocyte-like cells as therapeutic cells for the liver diseases. Methods: HAM and HUC were isolated from the amnion and umbilical cord of the volunteers after a caesarean section with informed consent. In order to differentiate these cells into hepatocyte-like cells, cells were cultivated in hepatogenic medium using culture plates coated with fibronectin. Effects of hepatocyte growth factor, L-ascorbic acid 2-phosphate, insulin premixture fibroblast growth gactor 4, dimethylsulfoxide, oncostatin M and/or dexamethasone were examined on the hepatic differentiation. After differentiation, the cells were analyzed by RT-PCR, immunocytochemistry, immunoblotting, albumin ELISA, urea assay and periodic acid-schiffs staining. Results: Initial fibroblast-like appearance of HAM and HUC changed to a round shape during culture in the hepatogenic medium. However, in all hepatogenic conditions examined, HUC secreted more amounts of albumin or urea into medium than HAM. Expression of some of hepatocyte-specific genes increased and expression of new genes were observed in HUC following cultivation in hepatogenic medium. Results of immunocytochemistry and immunoblotting analyses demonstrated that HUC secreted albumin into the culture medium. PAS staining further demonstrated that HUC could store glycogen inside of the cells. Conclusions: Both HUC and HAM could differentiate into albumin-secreting, hepatocyte-like cells. Under the same hepatogenic conditions examined, HUC more efficiently differentiated into hepatocyte-like cells compared with the HAM. The results suggest that HUC and HAM could be used as sources of stem cells for the cell-based therapeutics such as in liver diseases.

Human adipose-derived mesenchymal stem cell spheroids improve recovery in a mouse model of elastase-induced emphysema

  • Cho, Ryeon Jin;Kim, You-Sun;Kim, Ji-Young;Oh, Yeon-Mok
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • Emphysema, a pathologic component of the chronic obstructive pulmonary disease, causes irreversible destruction of lung. Many researchers have reported that mesenchymal stem cells can regenerate lung tissue after emphysema. We evaluated if spheroid human adipose-derived mesenchymal stem cells (ASCs) showed greater regenerative effects than dissociated ASCs in mice with elastase-induced emphysema. ASCs were administered via an intrapleural route. Mice injected with spheroid ASCs showed improved regeneration of lung tissues, increased expression of growth factors such as fibroblast growth factor-2 (FGF2) and hepatocyte growth factor (HGF), and a reduction in proteases with an induction of protease inhibitors when compared with mice injected with dissociated ASCs. Our findings indicate that spheroid ASCs show better regeneration of lung tissues than dissociated ACSs in mice with elastase-induced emphysema.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Anti-oxidant Effect on Stevia rebaudiana (Stevia rebaudiana의 항산화 효과)

  • Jung, Eun Hye;Seo, Hye Lim;Kim, Min Gyu;Kim, Young Woo;Cho, Il Je
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.764-770
    • /
    • 2013
  • Stevia rebaudiana is a traditional herb used as a sweetener in Brazil and Paraguay as well as Korea and China. This study investigated the efficacy of Stevia rebaudiana methanol extract (SRE) to protect cells against the mitochondrial dysfunction and apoptosis in hepatocyte. To determine the effects of SRE on oxidative stress, we used the human derived hepatocyte cell line, HepG2 cell. Treatment of arachidonic acid (AA)+iron in HepG2 cells synergistically amplified cytotoxicity, as indicated by the excess reactive oxygen species (ROS) and mitochondrial permeability transition by fluorescence activated cell sorter (FACS) and immunoblot analysis. Treatment with SRE protected hepatocytes from AA+iron-induced cellular toxicity, as shown by alterations in the protein levels related with cell viability such as procaspase-3. SRE also prevented the mitochondrial dysfunction induced by AA+iron, and showed anti-oxidant effects as inhibition of $H_2O_2$ production and GSH depletion. Moreover, we measured the effects of SRE on AMP-activated protein kinase (AMPK), a key regulator in determining cell survival or death. Acetyl-CoA Carboxylase (ACC), a direct downstream target of AMPK. SRE increased phosphorylation of ACC, and prevented the inhibition of ACC phosphorylation by AA+iron. These results indicated that SRE has the ability to protect cells against AA+iron-induced $H_2O_2$ production and mitochondrial impairment, which may be mediated with AMPK-ACC pathway.

The effects of Hemistepta lyrata Bunge (Bunge) fractionated extract on liver X receptor α-dependent lipogenic genes in hepatocyte-derived cells (간 실질세포주에서 니호채(泥胡菜) 분획물이 liver X receptor α 의존적 지방 생성 유전자의 발현에 미치는 효과)

  • Kim, Jae Kwang;Cho, Il Je;Kim, Eun Ok;Jung, Dae Hwa;Ku, Sae Kwang;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.28 no.3
    • /
    • pp.255-269
    • /
    • 2020
  • Objectives : Hemistepta lyrata Bunge (Bunge) is a wild herb that has been used for managing fever and wound in Korean Traditional Medicine. The present study explored the effects of H. lyrata extract on liver X receptor (LXR) α-dependent lipogenic genes in hepatocyte-derived cells. Methods : After HepG2 cells or Huh7 cells were pre-treated with 1-10 ㎍/mL of H. lyrata extract or its fractionated extract for 0.5 h, the cells were subsequently exposed to LXR ligand for 6-24 h. Cell viability, LXR response element (LXRE)-driven luciferase activity, sterol regulatory element binding protein-response element (SREBP-RE)-driven luciferase activity, SREBP-1c expression, and mRNA levels of LXRα and its-dependent target genes were determined. In addition, LC-MS/MS analysis was conducted to explore major compounds in H. lyrata-chloroform fractionated extract #4 (HL-CF4). Results : Of various H. lyrata extracts tested, chloroform extract and its fractionated extract #4, HL-CF4, significantly decreased T0901317-mediated SREBP-1c expression. In addition, HL-CF4 significantly reduced LXRE atransactivation and LXRα mRNA expression without any cytotoxicity. Moreover, HL-CF4 prevented the SREBP-RE-driven luciferase activity and mRNA levels of fatty acid synthase and stearoyl-CoA desaturase-1 induced by T0901317. Results from LC-MS/MS analysis at positive/negative mode indicated that HL-CF4 contained several compounds showing m/z 197.1176 (C11H17O3), 693.2913/227.1069 (C38H45O12/C15H15O2), 203.1797 (C15H23), 181.1225 (C11H17O2), 591.2957 (C35H43O8), 379.1040 (C18H19O9), 409.1509 (C20H25O9), 309.1348 (C16H21O6), 391.1404 (C20H23O8), and 669.2924/389.1248 (C36H45O12/C20H21O8). Conclusion : Based on its inhibition of the LXRα-dependent signaling pathway, H. lyrata chloroform extract and HL-CF4 have prophylactic potentials for managing non-alcoholic fatty liver.

Mitochondria protection of Sparganii Rhizoma against oxidative stress in heptocytes (삼릉(三稜) 추출물의 간세포 보호 및 미토콘드리아 보호 효과)

  • Seo, Hye-Lim;Lee, Ju-Hee;Jang, Mi-Hee;Kwon, Young-Won;Cho, Il-Je;Kim, Kwang-Joong;Park, Sook-Jahr;Kim, Sang-Chan;Kim, Young-Woo;Byun, Sung-Hui
    • Herbal Formula Science
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2015
  • Objectives : Sparganii Rhizoma is frequently used in traditional herbal medicine for treatment of blood stasis, amenorrhea and functional dyspepsia and has been reported to exhibit anti-oxidant, anti-proliferation and anti-angiogenesis peoperties. In this study, we investigated the cytoprotective effect and underlying mechanism of Sparganii Rhizoma water extract (SRE) against oxidative stress-induced mitochondrial dysfunction and apoptosis in hepatocyte. Methods : To determine the effects of SRE on oxidative stress, we induced synergistic cytotoxicity by co-treatment of arachidonic acid (AA) and iron in the HepG2 cell, a human derived hepatocyte cell line. Results : Treatment of SRE increased relative cell viability and altered the expression levels of apoptosis-related proteins such as Bcl-xL, Bcl-2 and procaspase-3. And SRE also inhibited the mitochondrial dysfunction and excessive reactive oxygen species production induced by AA+iron. In addition, SRE activated of AMP-activated protein kinase (AMPK), a potential target for cytoprotection, by increasing the phosphorylation of AMPKα at Thr-172. Morever, SRE increased phosphorylation of acetyl-CoA carboxylase, a direct downstream target of AMPK. Conclusion : These results indicated that SRE has the ability to protect against oxidative stress-induced hepatocyte damage, which may be mediated with AMPK pathway.

The Antimicrobial Insect Peptide CopA3 Blocks Ethanol-Induced Liver Inflammation and Liver Cell Injury in Mice

  • Kim, Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.157-163
    • /
    • 2022
  • Alcoholic liver disease (ALD), which encompasses alcoholic steatosis, alcoholic hepatitis, and alcoholic cirrhosis, is a major cause of morbidity and mortality worldwide. Although the economic and health impacts of ALD are clear, few advances have been made in its prevention or treatment. We recently demonstrated that the insect-derived antimicrobial peptide CopA3 exerts anti-apoptotic and anti-inflammatory activities in various cell systems, including neuronal cells and colonic epithelial cells. Here, we tested whether CopA3 inhibits ethanol-induced liver injury in mice. Mice were intraperitoneally injected with ethanol only or ethanol plus CopA3 for 24 h and then liver injury and inflammatory responses were measured. Ethanol enhanced the production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interferon (IFN)-γ, and IL-10. It also induced hepatocyte apoptosis and ballooning degeneration in hepatocytes. Notably, all these effects were eliminated or significantly reduced by CopA3 treatment. Collectively, our findings demonstrate that CopA3 ameliorates ethanol-induced liver cell damage and inflammation, suggesting the therapeutic potential of CopA3 for treating ethanol-induced liver injury.

Involvement of NOX2-derived ROS in human hepatoma HepG2 cell death induced by Entamoeba histolytica

  • Young Ah Lee ;Myeong Heon Shin
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • Entamoeba histolytica is an enteric tissue-invasive protozoan parasite causing amoebic colitis and liver abscesses in humans. Amoebic contact with host cells activates intracellular signaling pathways that lead to host cell death via generation of caspase-3, calpain, Ca2+ elevation, and reactive oxygen species (ROS). We previously reported that various NADPH oxidases (NOXs) are responsible for ROS-dependent death of various host cells induced by amoeba. In the present study, we investigated the specific NOX isoform involved in ROS-dependent death of hepatocytes induced by amoebas. Co-incubation of hepatoma HepG2 cells with live amoebic trophozoites resulted in remarkably increased DNA fragmentation compared to cells incubated with medium alone. HepG2 cells that adhered to amoebic trophozoites showed strong dichlorodihydrofluorescein diacetate (DCF-DA) fluorescence, suggesting intracellular ROS accumulation within host cells stimulated by amoebic trophozoites. Pretreatment of HepG2 cells with the general NOX inhibitor DPI or NOX2-specific inhibitor GSK 2795039 reduced Entamoeba-induced ROS generation. Similarly, Entamoeba-induced LDH release from HepG2 cells was effectively inhibited by pretreatment with DPI or GSK 2795039. In NOX2-silenced HepG2 cells, Entamoeba-induced LDH release was also significantly inhibited compared with controls. Taken together, the results support an important role of NOX2-derived ROS in hepatocyte death induced by E. histolytica.

Effect of Proteases on the Migration and Invasion of U-373-MG Cells Induced by Vascular Endothelial Growth Factor and Hepatocyte Growth Factor (VEGF와 HGF에 의해 유도된 U-373-MG 세포의 이동 및 침윤에 미치는 단백질분해효소의 효과)

  • Jeon, Hui Young;Kim, Hwan Gyu
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1189-1195
    • /
    • 2016
  • Vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) are potent angiogenic factors that have been used clinically to induce angiogenesis. To enable migration and invasion, cells must proliferate and secrete proteinases, which degrade the surrounding extracellular matrix. The goal of this study was to investigate the cell proliferation; matrix metalloproteinase-2 (MMP-2), MMP-9, and plasmin secretion; and migration and invasion of glioma-derived U-373-MG cells induced by VEGF and HGF treatment. An additional goal was to test the hypothesis that elevated secretion of MMP-2, MMP-9, and plasmin contributed directly or indirectly to the proliferation, migration, and invasion of U-373-MG cells. Cell proliferation, migration, and invasion and MMP-2, MMP-9, and plasmin secretion were significantly increased in the VEGF and HGF-treated U-373-MG cells. To elucidate the role of the increased secretion of MMP-2, MMP-9, and plasmin in cell proliferation, migration, and invasion of the U-373-MG cells, they were treated with MMPs inhibitor (BB-94) and plasmin inhibitor (α2AP) prior to VEGF or HGF stimulation. The BB-94 and α2AP treatment resulted in a significant reduction in the cell proliferation, migration, and invasion of the U-373-MG cells as compared with the VEGF- and HGF-treated groups. The results indicate that inhibition of MMPs and plasmin reduce the cell proliferation, migration, and invasion of U-373-MG cells.

Evaluation of 1-DNJ extracted from Silkworm in GBV-B Infected Marmoset Hepatocytes

  • James R. Jacob;Yoo, Jung-Eun;Seong, Su-Il;Ryu, Kang-Sun;Kim, Young-Ho
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.04a
    • /
    • pp.53-53
    • /
    • 2003
  • Alpha-glucosidase inhibitor, 1-deoxynojirimycin, has been shown to eliminate the production of ER-budding viruses in the ER of host cell. This glucose-derived iminosugar derivative, 1-DNJ, has been largely purified from midgut of silkworm, Bombyx mori, Here, we have screened the antiviral activity in the GBV-B infected marmoset hepatocyte cell line. (omitted)

  • PDF