Browse > Article
http://dx.doi.org/10.14374/HFS.2015.23.2.189

Mitochondria protection of Sparganii Rhizoma against oxidative stress in heptocytes  

Seo, Hye-Lim (Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University)
Lee, Ju-Hee (Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University)
Jang, Mi-Hee (Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University)
Kwon, Young-Won (Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University)
Cho, Il-Je (Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University)
Kim, Kwang-Joong (Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University)
Park, Sook-Jahr (Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University)
Kim, Sang-Chan (Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University)
Kim, Young-Woo (Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University)
Byun, Sung-Hui (Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University)
Publication Information
Herbal Formula Science / v.23, no.2, 2015 , pp. 189-198 More about this Journal
Abstract
Objectives : Sparganii Rhizoma is frequently used in traditional herbal medicine for treatment of blood stasis, amenorrhea and functional dyspepsia and has been reported to exhibit anti-oxidant, anti-proliferation and anti-angiogenesis peoperties. In this study, we investigated the cytoprotective effect and underlying mechanism of Sparganii Rhizoma water extract (SRE) against oxidative stress-induced mitochondrial dysfunction and apoptosis in hepatocyte. Methods : To determine the effects of SRE on oxidative stress, we induced synergistic cytotoxicity by co-treatment of arachidonic acid (AA) and iron in the HepG2 cell, a human derived hepatocyte cell line. Results : Treatment of SRE increased relative cell viability and altered the expression levels of apoptosis-related proteins such as Bcl-xL, Bcl-2 and procaspase-3. And SRE also inhibited the mitochondrial dysfunction and excessive reactive oxygen species production induced by AA+iron. In addition, SRE activated of AMP-activated protein kinase (AMPK), a potential target for cytoprotection, by increasing the phosphorylation of AMPKα at Thr-172. Morever, SRE increased phosphorylation of acetyl-CoA carboxylase, a direct downstream target of AMPK. Conclusion : These results indicated that SRE has the ability to protect against oxidative stress-induced hepatocyte damage, which may be mediated with AMPK pathway.
Keywords
Sparganii Rhizoma; hepatocyte; mitochondria; oxidative stress; AMPK;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Shin SM, Kim SG. Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and nove 1,2-dithiole-3thione congeners. Mol Pharmacol 2009;75:242-53.   DOI
2 Jang WD. Compound of Sparganii Rhizoma. Journal of chinese medicine. 1995;20(8):486-487.
3 Murgia M, Giorgi C, Pinton P, Rizzuto R: Controlling metabolism and cell death: At the heart of mitochondrial calcium signalling. Journal of molecular and cellular cardiology. 2009;46(6):781-788.   DOI
4 Stowe DF, Camara AK: Mitochondrial reactive oxygen species production in excitable cells: Modulators of mitochondrial and cell function. Antioxidants & redox signaling. 2009;11(6):1373-1414.   DOI
5 Green DR, Kroemer G: The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626-629.   DOI
6 Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114:147-52.   DOI
7 Cocco T, Di Paola M, Papa S, Lorusso M. Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free radic Biol Med. 1999;27:51-9.   DOI
8 Kockeritz L, Doble B, Patel S, Woodgett JR. Glycogen synthase kinase-3-an overview of an over-achieving protein kinase. Curr Drug Targets. 2006;7:1377-88.   DOI
9 Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P. Arachidonic acid caused cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alha apoptotic signaling. J Biol Chem. 2001;276:12035-40.   DOI
10 Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001;33(10):940-959   DOI
11 Swanson CA. Iron intake and regulation: implications for iron deficiency and iron overload. Alcohol. 2003;30(2):99-102   DOI
12 McLaren CE, Gordeuk VR, Looker AC, Hasselblad V, Edwards CQ, Griffen LM, Kushner JP, Brittenham GM, Prevalence of heterozygotes for hemochromatosis in the white population of the United States. Blood. 1995;86:2021-7.
13 Muralikrishna Adibhatla R, Hatcher JF. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerevral ischemia. Free Radic Biol Med. 2006;40:376-87.   DOI
14 Claria, J. : Regulation of cell proliferation and apoptosis by bioactive lipid mediators. Recent Pat. Anticancer Drug Discov. 2006;1:369.
15 Nakanishi, M. and Rosenberg, D. W. : Roles of cPLA2a and arachidonic acid in cancer. Biochim. Biophys. Acta. 2006;1761:1335.   DOI
16 Scorrano, L., Penzo, D., Petronilli, V., Pagano, F. and Bernardi, P. : Mitochondria are direct targets of the lipoxygenase inhibitor MK886. A strategy for cell killing by combined treatment with MK886 and cyclooxygenase inhibitors. J. Biol. Chem. 2001; 276:12035.   DOI
17 Wood A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D: Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constiutively active and dominant negative forms of the kinase. Mol Cell Biol. 2000;20:6704-6711.   DOI
18 Shin SJ, Lee JH. Antitumor effects of SKT (Skullcap - Knope sedge - Trametes) mixture extract. Korea journal of Pharmacogn. 2004;35(4):325.
19 Kim JG, Kang YM, Eum GS, Ko YM, Kim TY. Antioxidative activity and antimicrobial activity of extracts from medicinal plants. Journal of agriculture & Life sciences. 2003;37(4): 69-75.
20 Lee BC, Kim JH, Sim GS, Zhang YH, Pyo HB. The inhibitory effects of the Sparganii Rhizoma on melanogenesis. J. Soc. Cosmet. Scientists. 2005;31(4):305-310.
21 Foretz M, Carling D, Guichard C, Ferre P, Foufelle F: AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J Biol Chem 1988;273:14767-1771
22 Assifi MM, Suchankova G, Constant Sm Prenki M, Saha AK, Ruderman NB: AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Am j Physiol Endocrinol Metab. 2005;289: E794-E800.   DOI
23 Das S, Wong R, Rajapakes N, Murphy E, Steenbergen C. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation. Circ Res. 2008;103:983-91.   DOI
24 Grimes CA, jope RS. The multifaceted roles of glycogen synthase kinase 3 beta in cellular signaling. Prog Neurobiol. 2001;65:391-426.   DOI
25 Shin SM, Cho IJ, Kim SG. Resveratrol protects mitochondria against oxidative stress through AMPK-mediated GSK3β inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol Pharmacol. 2009;76:884-95.   DOI
26 Huh SJ, Lee GS, Song BK. Study on the analgesic and anticoagulative effects of Sparganii rhizoma aqua acupuncture. The society of korean medicine obstetrics and gynecology. 2000;8:98.
27 Lan F, Cacicedo CJM, Ruderman N, Ido Y: SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008;283:27628-27635.   DOI
28 Towler, M.C., Hardie, D.G. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 2007;100(3):328-341.   DOI
29 Henderson LM, Chappel JB. Article NADPH oxidase of neutrophils. Biochim Biophys Acta. 1996;1273: 87-107.   DOI
30 Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW. Cytosolic NADP+-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med. 2002;32: 1185-1196.   DOI
31 Galaris, D., Pantopoulos, K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci. 2008;45(1):1-23   DOI
32 Choi SH, Kim YW, Kim SG. AMPK-mediated GSK-3beta inhibition by isoliquiritigenine contributes to protecting mitochondria against iron-catalyzed oxidative stress. Biochem Pharmacol. 2010;79(9):1352-62.   DOI
33 Korea professors of Herbal medicine. Herbal medicine. Youngrimsa korea. 1991;418-9.
34 Shin SY, Doh SH, Shin KH. Chemical constituents of the Rhizomes of Sparganium stoloniferum. Yakhakhoeji. 2000;44(4): 334-339.
35 Cryns V, Yuan J. Proteases to die for. Genes Dev. 1998;12(11):1551-70.   DOI
36 Tong H, Imahashi K, Steenbergen C, Murphy E. Posphrylation of glycogen synthase kinase-3β during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res. 2002;90:377-9.   DOI
37 Shin SM, Cho IJ, Kim SG. Resveratrol protects mitochondria against oxidative stress through AMPK-mediated GSK3β inhibition downstream of poly(ADP-ribose) polymerase-LKB1 pathway. Mol Pharmacol. 2009;76:884-95.   DOI
38 Ashkenazi A, Dixit VM. Death receptors : signaling and modulation. Science. 1998;281(5381): 1305-8.   DOI
39 Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 1995;81(5):801-809.   DOI
40 Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF. PARP is important for genomic stability but dispensable in apoptosis. Genes & Dev. 1997;11(18):2347-2358.   DOI
41 Kang YK, EA Lee, HR Park. Neuroprotective effect according to reactive oxugen species scavenging activity from extracts of cudrania tricuspidata leaves. Korean J Food cookery Sci. 2012;28(6):821-8.   DOI
42 Shindo, Y., Witt, E., Han, D., Epstein, W., Packer, L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol. 1944;102(1):112-128.
43 Yeom, J.B., Han, J. Mitochondrial Physiology. Korean Society of Medical Biochemistry and Molecular Biology. 2008;15(1):25-33.
44 Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC. The tumor suppressor LKB1 kinase directly activates AMP-actkvated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2000;101:3329-35.
45 Cocco, T., DiPaola, M., Papa, S., Lorusso, M. Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free Radic Biol Med. 1999;27(1-2):51-59.   DOI
46 Carling, D. The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci. 2004;29(1):18-24.   DOI
47 Hawley, S.A., Davison, M., Woods, A., Davies, S.P., Beri, R.K., Caring, D., Hardie, D.G. Haracterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996;271(44):27879-27887.   DOI
48 Lan F, Cacicedo JM, Ruderman N, Ido Y: SIRT1 modulation of the acetylation status, cytosolic localization, andactivity of LKB1. Possible role in AMP-activted protein kinase activation. J Biol Chem. 2008;283:27628-27635.   DOI
49 Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535-49.   DOI