1 |
Tolar, J., Le Blanc, K., Keating, A. and Blazar, B. R. (2010) Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28, 1446-1455.
DOI
|
2 |
Tseng, T. C. and Hsu, S. H. (2014) Substrate-mediated nanoparticle/ gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 35, 2630-2641.
DOI
|
3 |
Wang, C. C., Chen, C. H., Hwang, S. M., Lin, W. W., Huang, C. H., Lee, W. Y., Chang, Y. and Sung, H. W. (2009a) Spherically symmetric mesenchymal stromal cell bodies inherent with endogenous extracellular matrices for cellular cardiomyoplasty. Stem Cells 27, 724-732.
DOI
|
4 |
Wang, W., Itaka, K., Ohba, S., Nishiyama, N., Chung, U. I., Yamasaki, Y. and Kataoka, K. (2009b) 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials 30, 2705-2715.
DOI
|
5 |
Yamaguchi, Y., Ohno, J., Sato, A., Kido, H. and Fukushima, T. (2014) Mesenchymal stem cell spheroids exhibit enhanced in-vitro and invivo osteoregenerative potential. BMC Biotechnol. 14, 105.
DOI
|
6 |
Yeh, H. Y., Liu, B. H., Sieber, M. and Hsu, S. H. (2014) Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics 15, 10.
DOI
|
7 |
Ylostalo, J. H., Bartosh, T. J., Coble, K. and Prockop, D. J. (2012) Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells 30, 2283-2296.
DOI
|
8 |
Yoon, H. H., Bhang, S. H., Shin, J. Y., Shin, J. and Kim, B. S. (2012) Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Eng. Part A 18, 1949-1956.
DOI
|
9 |
Zhang, M., Methot, D., Poppa, V., Fujio, Y., Walsh, K. and Murry, C. E. (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33, 907-921.
DOI
|
10 |
Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P. and Hedrick, M. H. (2002) Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279-4295.
DOI
|
11 |
Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P. and Hedrick, M. H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211-228.
DOI
|
12 |
Bhang, S. H., Cho, S. W., La, W. G., Lee, T. J., Yang, H. S., Sun, A. Y., Baek, S. H., Rhie, J. W. and Kim, B. S. (2011) Angiogenesis in ischemic tissue produced by spheroid grafting of human adiposederived stromal cells. Biomaterials 32, 2734-2747.
DOI
|
13 |
Assmus, B., Honold, J., Schächinger, V., Britten, M. B., Fischer-Rasokat, U., Lehmann, R., Teupe, C., Pistorius, K., Martin, H., Abolmaali, N. D., Tonn, T., Dimmeler, S. and Zeiher, A. M. (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med. 355, 1222-1232.
DOI
|
14 |
Baer, P. C., Griesche, N., Luttmann, W., Schubert, R., Luttmann, A. and Geiger, H. (2010) Human adipose-derived mesenchymal stem cells in vitro: evaluation of an optimal expansion medium preserving stemness. Cytotherapy 12, 96-106.
DOI
|
15 |
Bartosh, T. J., Ylöstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., Lee, R. H., Choi, H. and Prockop, D. J. (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl. Acad. Sci. U.S.A. 107, 13724-13729.
DOI
|
16 |
Cheng, N. C., Wang, S. and Young, T. H. (2012) The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 33, 1748-1758.
DOI
|
17 |
Bruder, S. P., Jaiswal, N. and Haynesworth, S. E. (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64, 278-294.
DOI
|
18 |
Burdick, J. A. and Vunjak-Novakovic, G. (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng. Part A 15, 205-219.
DOI
|
19 |
Chacko, S. M., Ahmed, S., Selvendiran, K., Kuppusamy, M. L., Khan, M. and Kuppusamy, P. (2010) Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am. J. Physiol. Cell Physiol. 299, C1562-C1570.
DOI
|
20 |
Cochrane, D. J., Stannard, S. R., Firth, E. C. and Rittweger, J. (2010) Comparing muscle temperature during static and dynamic squatting with and without whole-body vibration. Clin. Physiol. Funct. Imaging 30, 223-229.
DOI
|
21 |
Colter, D. C., Class, R., DiGirolamo, C. M. and Prockop, D. J. (2000) Rapid expansion of recycling stem cells in cultures of plasticadherent cells from human bone marrow. Proc. Natl. Acad. Sci. U.S.A. 97, 3213-3218.
DOI
|
22 |
da Silva Meirelles, L., Chagastelles, P. C. and Nardi, N. B. (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204-2213.
DOI
|
23 |
English, K., French, A. and Wood, K. J. (2010) Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell 7, 431-442.
DOI
|
24 |
Gonzalez, M. A., Gonzalez-Rey, E., Rico, L., Büscher, D. and Delgado, M. (2009) Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136, 978-989.
DOI
|
25 |
Erices, A., Conget, P. and Minguell, J. J. (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 109, 235-242.
DOI
|
26 |
Fiorina, P., Jurewicz, M., Augello, A., Vergani, A., Dada, S., La Rosa, S., Selig, M., Godwin, J., Law, K., Placidi, C., Smith, R. N., Capella, C., Rodig, S., Adra, C. N., Atkinson, M., Sayegh, M. H. and Abdi, R. (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J. Immunol. 183, 993-1004.
DOI
|
27 |
Frisch, S. M. and Screaton, R. A. (2001) Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555-562.
DOI
|
28 |
Grossmann, J. (2002) Molecular mechanisms of "detachment-induced apoptosis--Anoikis". Apoptosis 7, 247-260.
DOI
|
29 |
Hahn, J. Y., Cho, H. J., Kang, H. J., Kim, T. S., Kim, M. H., Chung, J. H., Bae, J. W., Oh, B. H., Park, Y. B. and Kim, H. S. (2008) Pretreatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J. Am. Coll. Cardiol. 51, 933-943.
DOI
|
30 |
Han, Y. S., Lee, J. H., Jung, J. S., Noh, H., Baek, M. J., Ryu, J. M., Yoon, Y. M., Han, H. J. and Lee, S. H. (2015) Fucoidan protects mesenchymal stem cells against oxidative stress and enhances vascular regeneration in a murine hindlimb ischemia model. Int. J. Cardiol. 198, 187-195.
DOI
|
31 |
Haycock, J. W. (2011) 3D cell culture: a review of current approaches and techniques. Methods Mol. Biol. 695, 1-15.
DOI
|
32 |
Lee, E. J., Park, S. J., Kang, S. K., Kim, G. H., Kang, H. J., Lee, S. W., Jeon, H. B. and Kim, H. S. (2012) Spherical bullet formation via Ecadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Mol. Ther. 20, 1424-1433.
DOI
|
33 |
Hill, E., Boontheekul, T. and Mooney, D. J. (2006) Regulating activation of transplanted cells controls tissue regeneration. Proc. Natl. Acad. Sci. U.S.A. 103, 2494-2499.
DOI
|
34 |
Hyun, I., Hochedlinger, K., Jaenisch, R. and Yamanaka, S. (2007) New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell 1, 367-368.
DOI
|
35 |
Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I. et al. (2008) Mesenchymal stem cells for treatment of steroidresistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371, 1579-1586.
DOI
|
36 |
Li, T. S., Cheng, K., Lee, S. T., Matsushita, S., Davis, D., Malliaras, K., Zhang, Y., Matsushita, N., Smith, R. R. and Marbán, E. (2010) Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 28, 2088-2098.
DOI
|
37 |
Li, W., Ma, N., Ong, L. L., Nesselmann, C., Klopsch, C., Ladilov, Y., Furlani, D., Piechaczek, C., Moebius, J. M., Lützow, K., Lendlein, A., Stamm, C., Li, R. K. and Steinhoff, G. (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25, 2118-2127.
DOI
|
38 |
Limbourg, A., Korff, T., Napp, L. C., Schaper, W., Drexler, H. and Limbourg, F. P. (2009) Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat. Protoc. 4, 1737-1746.
DOI
|
39 |
Peterson, K. M., Aly, A., Lerman, A., Lerman, L. O. and Rodriguez-Porcel, M. (2011) Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress. Life Sci. 88, 65-73.
DOI
|
40 |
Park, E. and Patel, A. N. (2010) Changes in the expression pattern of mesenchymal and pluripotent markers in human adipose-derived stem cells. Cell Biol. Int. 34, 979-984.
DOI
|
41 |
Potapova, I. A., Brink, P. R., Cohen, I. S. and Doronin, S. V. (2008) Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. J. Biol. Chem. 283, 13100-13107.
DOI
|
42 |
Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V. and March, K. L. (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109, 1292-1298.
DOI
|
43 |
Rodriguez-Lozano, F. J., Bueno, C., Insausti, C. L., Meseguer, L., Ramirez, M. C., Blanquer, M., Marín, N., Martínez, S. and Moraleda, J. M. (2011) Mesenchymal stem cells derived from dental tissues. Int. Endod. J. 44, 800-806.
DOI
|
44 |
Rosova, I., Dao, M., Capoccia, B., Link, D. and Nolta, J. A. (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26, 2173-2182.
DOI
|
45 |
Salem, H. K. and Thiemermann, C. (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28, 585-596.
|
46 |
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147.
DOI
|