DOI QR코드

DOI QR Code

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee (Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University) ;
  • Han, Yong-Seok (Medical Science Research Institute, Soonchunhyang University Seoul Hospital) ;
  • Lee, Sang Hun (Medical Science Research Institute, Soonchunhyang University Seoul Hospital)
  • Received : 2015.09.08
  • Accepted : 2015.11.11
  • Published : 2016.05.01

Abstract

Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Keywords

References

  1. Assmus, B., Honold, J., Schächinger, V., Britten, M. B., Fischer-Rasokat, U., Lehmann, R., Teupe, C., Pistorius, K., Martin, H., Abolmaali, N. D., Tonn, T., Dimmeler, S. and Zeiher, A. M. (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med. 355, 1222-1232. https://doi.org/10.1056/NEJMoa051779
  2. Baer, P. C., Griesche, N., Luttmann, W., Schubert, R., Luttmann, A. and Geiger, H. (2010) Human adipose-derived mesenchymal stem cells in vitro: evaluation of an optimal expansion medium preserving stemness. Cytotherapy 12, 96-106. https://doi.org/10.3109/14653240903377045
  3. Bartosh, T. J., Ylöstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., Lee, R. H., Choi, H. and Prockop, D. J. (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl. Acad. Sci. U.S.A. 107, 13724-13729. https://doi.org/10.1073/pnas.1008117107
  4. Bhang, S. H., Cho, S. W., La, W. G., Lee, T. J., Yang, H. S., Sun, A. Y., Baek, S. H., Rhie, J. W. and Kim, B. S. (2011) Angiogenesis in ischemic tissue produced by spheroid grafting of human adiposederived stromal cells. Biomaterials 32, 2734-2747. https://doi.org/10.1016/j.biomaterials.2010.12.035
  5. Bruder, S. P., Jaiswal, N. and Haynesworth, S. E. (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64, 278-294. https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F
  6. Burdick, J. A. and Vunjak-Novakovic, G. (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng. Part A 15, 205-219. https://doi.org/10.1089/ten.tea.2008.0131
  7. Chacko, S. M., Ahmed, S., Selvendiran, K., Kuppusamy, M. L., Khan, M. and Kuppusamy, P. (2010) Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am. J. Physiol. Cell Physiol. 299, C1562-C1570. https://doi.org/10.1152/ajpcell.00221.2010
  8. Cheng, N. C., Wang, S. and Young, T. H. (2012) The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 33, 1748-1758. https://doi.org/10.1016/j.biomaterials.2011.11.049
  9. Cochrane, D. J., Stannard, S. R., Firth, E. C. and Rittweger, J. (2010) Comparing muscle temperature during static and dynamic squatting with and without whole-body vibration. Clin. Physiol. Funct. Imaging 30, 223-229. https://doi.org/10.1111/j.1475-097X.2010.00931.x
  10. Colter, D. C., Class, R., DiGirolamo, C. M. and Prockop, D. J. (2000) Rapid expansion of recycling stem cells in cultures of plasticadherent cells from human bone marrow. Proc. Natl. Acad. Sci. U.S.A. 97, 3213-3218. https://doi.org/10.1073/pnas.97.7.3213
  11. da Silva Meirelles, L., Chagastelles, P. C. and Nardi, N. B. (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204-2213. https://doi.org/10.1242/jcs.02932
  12. English, K., French, A. and Wood, K. J. (2010) Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell 7, 431-442. https://doi.org/10.1016/j.stem.2010.09.009
  13. Erices, A., Conget, P. and Minguell, J. J. (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 109, 235-242. https://doi.org/10.1046/j.1365-2141.2000.01986.x
  14. Fiorina, P., Jurewicz, M., Augello, A., Vergani, A., Dada, S., La Rosa, S., Selig, M., Godwin, J., Law, K., Placidi, C., Smith, R. N., Capella, C., Rodig, S., Adra, C. N., Atkinson, M., Sayegh, M. H. and Abdi, R. (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J. Immunol. 183, 993-1004. https://doi.org/10.4049/jimmunol.0900803
  15. Frisch, S. M. and Screaton, R. A. (2001) Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555-562. https://doi.org/10.1016/S0955-0674(00)00251-9
  16. Gonzalez, M. A., Gonzalez-Rey, E., Rico, L., Büscher, D. and Delgado, M. (2009) Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136, 978-989. https://doi.org/10.1053/j.gastro.2008.11.041
  17. Grossmann, J. (2002) Molecular mechanisms of "detachment-induced apoptosis--Anoikis". Apoptosis 7, 247-260. https://doi.org/10.1023/A:1015312119693
  18. Hahn, J. Y., Cho, H. J., Kang, H. J., Kim, T. S., Kim, M. H., Chung, J. H., Bae, J. W., Oh, B. H., Park, Y. B. and Kim, H. S. (2008) Pretreatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J. Am. Coll. Cardiol. 51, 933-943. https://doi.org/10.1016/j.jacc.2007.11.040
  19. Han, Y. S., Lee, J. H., Jung, J. S., Noh, H., Baek, M. J., Ryu, J. M., Yoon, Y. M., Han, H. J. and Lee, S. H. (2015) Fucoidan protects mesenchymal stem cells against oxidative stress and enhances vascular regeneration in a murine hindlimb ischemia model. Int. J. Cardiol. 198, 187-195. https://doi.org/10.1016/j.ijcard.2015.06.070
  20. Haycock, J. W. (2011) 3D cell culture: a review of current approaches and techniques. Methods Mol. Biol. 695, 1-15. https://doi.org/10.1007/978-1-60761-984-0_1
  21. Hill, E., Boontheekul, T. and Mooney, D. J. (2006) Regulating activation of transplanted cells controls tissue regeneration. Proc. Natl. Acad. Sci. U.S.A. 103, 2494-2499. https://doi.org/10.1073/pnas.0506004103
  22. Hyun, I., Hochedlinger, K., Jaenisch, R. and Yamanaka, S. (2007) New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell 1, 367-368. https://doi.org/10.1016/j.stem.2007.09.006
  23. Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I. et al. (2008) Mesenchymal stem cells for treatment of steroidresistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371, 1579-1586. https://doi.org/10.1016/S0140-6736(08)60690-X
  24. Lee, E. J., Park, S. J., Kang, S. K., Kim, G. H., Kang, H. J., Lee, S. W., Jeon, H. B. and Kim, H. S. (2012) Spherical bullet formation via Ecadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Mol. Ther. 20, 1424-1433. https://doi.org/10.1038/mt.2012.58
  25. Li, T. S., Cheng, K., Lee, S. T., Matsushita, S., Davis, D., Malliaras, K., Zhang, Y., Matsushita, N., Smith, R. R. and Marbán, E. (2010) Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 28, 2088-2098. https://doi.org/10.1002/stem.532
  26. Li, W., Ma, N., Ong, L. L., Nesselmann, C., Klopsch, C., Ladilov, Y., Furlani, D., Piechaczek, C., Moebius, J. M., Lützow, K., Lendlein, A., Stamm, C., Li, R. K. and Steinhoff, G. (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25, 2118-2127. https://doi.org/10.1634/stemcells.2006-0771
  27. Limbourg, A., Korff, T., Napp, L. C., Schaper, W., Drexler, H. and Limbourg, F. P. (2009) Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat. Protoc. 4, 1737-1746. https://doi.org/10.1038/nprot.2009.185
  28. Park, E. and Patel, A. N. (2010) Changes in the expression pattern of mesenchymal and pluripotent markers in human adipose-derived stem cells. Cell Biol. Int. 34, 979-984. https://doi.org/10.1042/CBI20100124
  29. Peterson, K. M., Aly, A., Lerman, A., Lerman, L. O. and Rodriguez-Porcel, M. (2011) Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress. Life Sci. 88, 65-73. https://doi.org/10.1016/j.lfs.2010.10.023
  30. Potapova, I. A., Brink, P. R., Cohen, I. S. and Doronin, S. V. (2008) Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. J. Biol. Chem. 283, 13100-13107. https://doi.org/10.1074/jbc.M800184200
  31. Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V. and March, K. L. (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109, 1292-1298. https://doi.org/10.1161/01.CIR.0000121425.42966.F1
  32. Rodriguez-Lozano, F. J., Bueno, C., Insausti, C. L., Meseguer, L., Ramirez, M. C., Blanquer, M., Marín, N., Martínez, S. and Moraleda, J. M. (2011) Mesenchymal stem cells derived from dental tissues. Int. Endod. J. 44, 800-806. https://doi.org/10.1111/j.1365-2591.2011.01877.x
  33. Rosova, I., Dao, M., Capoccia, B., Link, D. and Nolta, J. A. (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26, 2173-2182. https://doi.org/10.1634/stemcells.2007-1104
  34. Salem, H. K. and Thiemermann, C. (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28, 585-596.
  35. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147. https://doi.org/10.1126/science.282.5391.1145
  36. Tolar, J., Le Blanc, K., Keating, A. and Blazar, B. R. (2010) Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28, 1446-1455. https://doi.org/10.1002/stem.459
  37. Tseng, T. C. and Hsu, S. H. (2014) Substrate-mediated nanoparticle/ gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 35, 2630-2641. https://doi.org/10.1016/j.biomaterials.2013.12.021
  38. Wang, C. C., Chen, C. H., Hwang, S. M., Lin, W. W., Huang, C. H., Lee, W. Y., Chang, Y. and Sung, H. W. (2009a) Spherically symmetric mesenchymal stromal cell bodies inherent with endogenous extracellular matrices for cellular cardiomyoplasty. Stem Cells 27, 724-732. https://doi.org/10.1634/stemcells.2008-0944
  39. Wang, W., Itaka, K., Ohba, S., Nishiyama, N., Chung, U. I., Yamasaki, Y. and Kataoka, K. (2009b) 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials 30, 2705-2715. https://doi.org/10.1016/j.biomaterials.2009.01.030
  40. Yamaguchi, Y., Ohno, J., Sato, A., Kido, H. and Fukushima, T. (2014) Mesenchymal stem cell spheroids exhibit enhanced in-vitro and invivo osteoregenerative potential. BMC Biotechnol. 14, 105. https://doi.org/10.1186/s12896-014-0105-9
  41. Yeh, H. Y., Liu, B. H., Sieber, M. and Hsu, S. H. (2014) Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics 15, 10. https://doi.org/10.1186/1471-2164-15-10
  42. Ylostalo, J. H., Bartosh, T. J., Coble, K. and Prockop, D. J. (2012) Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells 30, 2283-2296. https://doi.org/10.1002/stem.1191
  43. Yoon, H. H., Bhang, S. H., Shin, J. Y., Shin, J. and Kim, B. S. (2012) Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Eng. Part A 18, 1949-1956. https://doi.org/10.1089/ten.tea.2011.0647
  44. Zhang, M., Methot, D., Poppa, V., Fujio, Y., Walsh, K. and Murry, C. E. (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33, 907-921. https://doi.org/10.1006/jmcc.2001.1367
  45. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P. and Hedrick, M. H. (2002) Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279-4295. https://doi.org/10.1091/mbc.E02-02-0105
  46. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P. and Hedrick, M. H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211-228. https://doi.org/10.1089/107632701300062859

Cited by

  1. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases vol.8, pp.1, 2017, https://doi.org/10.1186/s13287-017-0578-2
  2. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids vol.8, pp.1, 2017, https://doi.org/10.1186/s13287-017-0558-6
  3. Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05018-4
  4. Spheroids as vascularization units: From angiogenesis research to tissue engineering applications vol.35, pp.6, 2017, https://doi.org/10.1016/j.biotechadv.2017.07.002
  5. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways vol.150, 2017, https://doi.org/10.1016/j.jprot.2016.10.002
  6. Cell secretome based approaches in Parkinson’s disease regenerative medicine vol.18, pp.12, 2018, https://doi.org/10.1080/14712598.2018.1546840
  7. Two-Cell Spheroid Angiogenesis Assay System Using Both Endothelial Colony Forming Cells and Mesenchymal Stem Cells vol.26, pp.5, 2018, https://doi.org/10.4062/biomolther.2018.134
  8. Aggregation of human dental pulp cells into 3D spheroids enhances their migration ability after reseeding vol.234, pp.1, 2018, https://doi.org/10.1002/jcp.26927
  9. Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications pp.1937-3376, 2018, https://doi.org/10.1089/ten.teb.2018.0118
  10. Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics vol.2018, pp.1687-9678, 2018, https://doi.org/10.1155/2018/9415367
  11. Nanoparticles for Detection and Treatment of Peripheral Arterial Disease vol.14, pp.32, 2018, https://doi.org/10.1002/smll.201800644
  12. Study of oxygen tension variation within live tumor spheroids using microfluidic devices and multi-photon laser scanning microscopy vol.8, pp.53, 2018, https://doi.org/10.1039/C8RA05505J
  13. Cellular Spheroids of Mesenchymal Stem Cells and Their Perspectives in Future Healthcare vol.9, pp.4, 2019, https://doi.org/10.3390/app9040627
  14. Therapeutic Potential of Human Mesenchymal Stem Cells for Treating Ischemic Limb Diseases vol.9, pp.2, 2016, https://doi.org/10.15283/ijsc16053
  15. Enhanced Osteogenic Differentiation Potential of Stem-Cell Spheroids Created From a Coculture of Stem Cells and Endothelial Cells vol.26, pp.6, 2017, https://doi.org/10.1097/id.0000000000000685
  16. Extracellular matrix dynamics during mesenchymal stem cells differentiation vol.437, pp.2, 2018, https://doi.org/10.1016/j.ydbio.2018.03.002
  17. Osteogenic potential of cell spheroids composed of varying ratios of gingiva-derived and bone marrow stem cells using concave microwells vol.16, pp.3, 2016, https://doi.org/10.3892/etm.2018.6462
  18. Serum-Free Culture System for Spontaneous Human Mesenchymal Stem Cell Spheroid Formation vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6041816
  19. Therapeutic Effect of a Xeno-Free Three-Dimensional Stem Cell Mass in a Hind Limb Ischemia Model vol.25, pp.5, 2019, https://doi.org/10.1089/ten.tea.2018.0089
  20. Current Strategies to Enhance Adipose Stem Cell Function: An Update vol.20, pp.15, 2016, https://doi.org/10.3390/ijms20153827
  21. Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells vol.11, pp.10, 2016, https://doi.org/10.4252/wjsc.v11.i10.748
  22. Three-Dimensional Compaction Switches Stress Response Programs and Enhances Therapeutic Efficacy of Endometrial Mesenchymal Stem/Stromal Cells vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00473
  23. Early Vascular Cells Improve Microvascularization Within 3D Cardiac Spheroids vol.26, pp.2, 2016, https://doi.org/10.1089/ten.tec.2019.0228
  24. Dual Bioelectrical Assessment of Human Mesenchymal Stem Cells Using Plasma and Mitochondrial Membrane Potentiometric Probes vol.2, pp.3, 2016, https://doi.org/10.1089/bioe.2020.0006
  25. In Situ Formation of Proangiogenic Mesenchymal Stem Cell Spheroids in Hyaluronic Acid/Alginate Core-Shell Microcapsules vol.6, pp.12, 2020, https://doi.org/10.1021/acsbiomaterials.0c01489
  26. Secretome effect of adipose tissue-derived stem cells cultured two-dimensionally and three-dimensionally in mice with streptozocin induced type 1 diabetes vol.2, pp.None, 2016, https://doi.org/10.1016/j.crphar.2021.100069
  27. Functional Properties of Human-Derived Mesenchymal Stem Cell Spheroids: A Meta-Analysis and Systematic Review vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8825332
  28. Increased Mesenchymal Stem Cell Functionalization in Three-Dimensional Manufacturing Settings for Enhanced Therapeutic Applications vol.9, pp.None, 2016, https://doi.org/10.3389/fbioe.2021.621748
  29. Comparison of Pluripotency, Differentiation, and Mitochondrial Metabolism Capacity in Three-Dimensional Spheroid Formation of Dental Pulp-Derived Mesenchymal Stem Cells vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5540877
  30. The Duo of Osteogenic and Angiogenic Differentiation in ADSC-Derived Spheroids vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.572727
  31. Effects of Mesenchymal Stem Cell‐Derived Paracrine Signals and Their Delivery Strategies vol.10, pp.7, 2016, https://doi.org/10.1002/adhm.202001689
  32. Advances in removing mass transport limitations for more physiologically relevant in vitro 3D cell constructs vol.2, pp.2, 2016, https://doi.org/10.1063/5.0048837
  33. Biomaterials-assisted spheroid engineering for regenerative therapy vol.54, pp.7, 2016, https://doi.org/10.5483/bmbrep.2021.54.7.059
  34. Bioengineering of a scaffold-less three-dimensional tissue using net mould vol.13, pp.4, 2016, https://doi.org/10.1088/1758-5090/ac23e3
  35. Co‐delivery of fibrin‐laminin hydrogel with mesenchymal stem cell spheroids supports skeletal muscle regeneration following trauma vol.15, pp.12, 2016, https://doi.org/10.1002/term.3243
  36. Impact of 3D cell culture on bone regeneration potential of mesenchymal stromal cells vol.12, pp.1, 2016, https://doi.org/10.1186/s13287-020-02094-8
  37. Modulation of Mesenchymal Stem Cells for Enhanced Therapeutic Utility in Ischemic Vascular Diseases vol.23, pp.1, 2022, https://doi.org/10.3390/ijms23010249