Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.10.1189

Effect of Proteases on the Migration and Invasion of U-373-MG Cells Induced by Vascular Endothelial Growth Factor and Hepatocyte Growth Factor  

Jeon, Hui Young (Department of Beauty, Daeduk College)
Kim, Hwan Gyu (Department of Biological Sciences, College of Natural Sciences, Chonbuk National University)
Publication Information
Journal of Life Science / v.26, no.10, 2016 , pp. 1189-1195 More about this Journal
Abstract
Vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) are potent angiogenic factors that have been used clinically to induce angiogenesis. To enable migration and invasion, cells must proliferate and secrete proteinases, which degrade the surrounding extracellular matrix. The goal of this study was to investigate the cell proliferation; matrix metalloproteinase-2 (MMP-2), MMP-9, and plasmin secretion; and migration and invasion of glioma-derived U-373-MG cells induced by VEGF and HGF treatment. An additional goal was to test the hypothesis that elevated secretion of MMP-2, MMP-9, and plasmin contributed directly or indirectly to the proliferation, migration, and invasion of U-373-MG cells. Cell proliferation, migration, and invasion and MMP-2, MMP-9, and plasmin secretion were significantly increased in the VEGF and HGF-treated U-373-MG cells. To elucidate the role of the increased secretion of MMP-2, MMP-9, and plasmin in cell proliferation, migration, and invasion of the U-373-MG cells, they were treated with MMPs inhibitor (BB-94) and plasmin inhibitor (α2AP) prior to VEGF or HGF stimulation. The BB-94 and α2AP treatment resulted in a significant reduction in the cell proliferation, migration, and invasion of the U-373-MG cells as compared with the VEGF- and HGF-treated groups. The results indicate that inhibition of MMPs and plasmin reduce the cell proliferation, migration, and invasion of U-373-MG cells.
Keywords
Invasion; migration; MMPs; plasmin; protease inhibitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lakka, S. S., Rajan, M., Gondi, C., Yanamandra, N., Chandrasekar, N., Jasti, S. L., Adachi, Y., Siddique, K., Gujrati, M., Olivero, W., Dinh, D. H., Kouraklis, G., Kyritsis, A. P. and Rao, J. S. 2002. Adenovirus-mediated expression of antisense MMP-9 in glioma cells inhibits tumor growth and invasion. Oncogene 21, 8011-8019.   DOI
2 Lu, K. V., Chang, J. P., Parachoniak, C. A., Pandika, M. M., Aghi, M. K., Meyronet, D., Isachenko, N., Fouse, S. D., Phillips, J. J., Cheresh, D. A., Park, M. and Bergers, G. 2012. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22, 21-35.   DOI
3 Min, J. K., Lee, Y. M., Kim, J. H., Kim, Y. M., Kim, S. W., Lee, S. Y., Gho, Y. S., Oh, G. T. and Kwon, Y. G. 2005. Hepatocyte growth factor suppresses vascular endothelial growth factor-induced expression of endothelial ICAM-1 and VCAM-1 by inhibiting the nuclear factor-kappaB pathway. Circ. Res. 18, 300-307.
4 Pupa, S. M., Me‘nard, S., Forti, S. and Tagliabue, E. 2002. New insights into the role of extracellular matrix during tumor onset and progression. J. Cell. Physiol. 192, 259-267.   DOI
5 Roomi, M. W., Monterrey, J. C., Kalinovsky, T., Rath, M. and Niedzwiecki, A. 2010. Comparative effects of EGCG, green tea and a nutrient mixture on the patterns of MMP-2 and MMP-9 expression in cancer cell lines. Oncol. Rep. 24, 747-757.
6 Rosen, E. M., Lamszus, K., Laterra, J., Polverini, P. J., Rubin, J. S. and Goldberg, I. D. 1997. HGF/SF in angiogenesis. Ciba Found Symp. 212, 215-226.
7 Roth, D., Piekarek, M., Paulsson, M., Christ, H., Bloch, W., Krieg, T., Davidson, J. M. and Eming, S. A. 2006. Plasmin modulates vascular endothelial growth factor-A-mediated angiogenesis during wound repair. Am. J. Pathol. 168, 670-684.   DOI
8 Vanmeter, T. E., Rooprai, H. K., Kibble, M. M., Fillmore, H. L., Broaddus, W. C. and Pilkington, G. J. 2001. The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis. J. Neuro. Oncol. 53, 213-235.   DOI
9 Wang, G. M., Kovalenko, B., Huang, Y. and Moscatelli, D. 2007. Vascular endothelial growth factor and angiopoietin are required for prostate regeneration. Prostate 67, 485-499.   DOI
10 Wick, W., Platten, M. and Weller, M. 2001. Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J. Neurooncol. 53, 177-185.   DOI
11 Xin, X., Yang, S., Ingle, G., Zlot, C., Rangell, L., Kowalski, J., Schwall, R., Ferrara, N. and Gerritsen, M. E. 2001. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am. J. Pathol. 158, 1111-1120.   DOI
12 Yadav, L., Puri, N., Rastogi, V., Satpute, P. and Sharma, V. 2015. Tumour angiogenesis and angiogenic inhibitors. J. Clin. Diagn. Res. 9, XE01-XE05.
13 Zachary, I. 2003. VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochem. Soc. Trans. 31, 1171-1177.   DOI
14 Belotti, D., Paganoni, P., Manenti, L., Garofalo, A., Marchini, S., Taraboletti, G. and Giavazzi, R. 2003. Matrix metalloproteinases(MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res. 63, 5224-5229.
15 Apoorva, S., Edward, A. S., Archana, V. P., Che, B. P., Brown, M., García, A. J. and Davis, M. E. 2012. Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLoS One 7, e50980.   DOI
16 Badiga, A. V., Chetty, C., Kesanakurti, D., Are, D., Gujrati, M., Klopfenstein, J. D., Dinh, D. H. and Rao, J. S. 2011. MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS One 6, e20614.   DOI
17 Bauvois, B. 2012. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim. Biophys. Acta. 1825, 29-36.
18 Bonnans, C., Chou, J. and Werb, Z. 2014. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell. Biol. 15, 786-801.
19 Cai, H., Xue, Y., Li, Z., Hu, Y., Wang, Z., Liu, W., Li, Z. and Liu, Y. 2015. Roundabout4 suppresses glioma-induced endothelial cell proliferation, migration and tube formation in vitro by inhibiting VEGR2-mediated PI3K/AKT and FAK signaling pathways. Cell. Physiol. Biochem. 35, 1689-1705.   DOI
20 Zhang, Y. W., Su, Y., Volpert, O. V. and Vande Woude, G. F. 2002. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc. Natl. Acad. Sci. USA 100, 12718-12723.
21 Carmeliet, P. 2005. Angiogenesis in life, disease and medicine. Nature 15, 932-936.
22 Charlesworth, P. J. and Harris, A. L. 2006. Mechanisms of disease: angiogenesis in urologic malignancies. Nat. Clin. Pract. Urol. 3, 157-169.   DOI
23 Chen, F. X., Qian, Y. R., Duan, Y. H., Ren, W. W., Yang, Y., Zhang, C. C., Qiu, Y. M. and Ji, Y. H. 2009. Down-regulation of 67LR reduces the migratory activity of human glioma cells in vitro. Brain Res. Bull. 14, 402-408.
24 Choe, G., Park, J. K., Jouben-Steele, L., Kremen, T. J., Liau, L. M., Vinters, H. V., Cloughesy, T. F. and Mischel, P. S. 2002. Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin. Cancer Res. 8, 2894-2901.
25 Cimpean, A. M., Seclaman, E., Ceauşu, R., Gaje, P., Feflea, S., Anghel, A., Raica, M. and Ribatti, D. 2009. VEGF-A/HGF induce Prox-1 expression in the chick embryo chorioallantoic membrane lymphatic vasculature. Clin. Exp. Med. 10, 169-172.
26 Dzwonek, J., Rylski, M. and Kaczmarek, L. 2004. Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Lett. 567, 129-135.   DOI
27 Egeblad, M. and Werb, Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161-174.   DOI
28 Kesanakurti, D., Chetty, C., Maddirela, D. R., Gujrati, M. and Rao, J. S. 2012. Functional cooperativity by direct interaction between PAK4 and MMP-2 in the regulation of anoikis resistance, migration and invasion in glioma. Cell Death Dis. 3, e445.   DOI
29 Ferrara, N. 1999. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 56, 794-814.   DOI
30 Guo, P., Imanishi, Y., Cackowski, F. C., Jarzynka, M. J., Tao, H. Q., Nishikawa, R., Hirose, T., Hu, B. and Cheng, S. Y. 2005. Up-Regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5γ2 correlates with the invasiveness of human glioma. Am. J. Pathol. 166, 877-890.   DOI
31 Klein, S., Giancotti, F. G., Presta, M., Albelda, S. M., Buck, C. A. and Rifkin, D. B. 1993. Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol. Biol. Cell 4, 973-982.   DOI
32 Kleiner, D. E. and Stetler-Stevenson, W. G. 1999. Matrix metalloproteinases and metastasis. Cancer Chemother. Pharmacol. 43, S42-S51.   DOI
33 Kondraganti, S., Mohanam, S., Chintala, S. K., Kin, Y., Jasti, S. L., Nirmala, C., Lakka, S. S., Adachi, Y., Kyritsis, A. P., Ali-Osman, F., Sawaya, R., Fuller, G. N. and Rao, J. S. 2000. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res. 60, 6851-6855.