Browse > Article
http://dx.doi.org/10.14374/HFS.2020.28.3.255

The effects of Hemistepta lyrata Bunge (Bunge) fractionated extract on liver X receptor α-dependent lipogenic genes in hepatocyte-derived cells  

Kim, Jae Kwang (College of Korean Medicine, Daegu Haany University)
Cho, Il Je (College of Korean Medicine, Daegu Haany University)
Kim, Eun Ok (College of Korean Medicine, Daegu Haany University)
Jung, Dae Hwa (College of Korean Medicine, Daegu Haany University)
Ku, Sae Kwang (College of Korean Medicine, Daegu Haany University)
Kim, Sang Chan (College of Korean Medicine, Daegu Haany University)
Publication Information
Herbal Formula Science / v.28, no.3, 2020 , pp. 255-269 More about this Journal
Abstract
Objectives : Hemistepta lyrata Bunge (Bunge) is a wild herb that has been used for managing fever and wound in Korean Traditional Medicine. The present study explored the effects of H. lyrata extract on liver X receptor (LXR) α-dependent lipogenic genes in hepatocyte-derived cells. Methods : After HepG2 cells or Huh7 cells were pre-treated with 1-10 ㎍/mL of H. lyrata extract or its fractionated extract for 0.5 h, the cells were subsequently exposed to LXR ligand for 6-24 h. Cell viability, LXR response element (LXRE)-driven luciferase activity, sterol regulatory element binding protein-response element (SREBP-RE)-driven luciferase activity, SREBP-1c expression, and mRNA levels of LXRα and its-dependent target genes were determined. In addition, LC-MS/MS analysis was conducted to explore major compounds in H. lyrata-chloroform fractionated extract #4 (HL-CF4). Results : Of various H. lyrata extracts tested, chloroform extract and its fractionated extract #4, HL-CF4, significantly decreased T0901317-mediated SREBP-1c expression. In addition, HL-CF4 significantly reduced LXRE atransactivation and LXRα mRNA expression without any cytotoxicity. Moreover, HL-CF4 prevented the SREBP-RE-driven luciferase activity and mRNA levels of fatty acid synthase and stearoyl-CoA desaturase-1 induced by T0901317. Results from LC-MS/MS analysis at positive/negative mode indicated that HL-CF4 contained several compounds showing m/z 197.1176 (C11H17O3), 693.2913/227.1069 (C38H45O12/C15H15O2), 203.1797 (C15H23), 181.1225 (C11H17O2), 591.2957 (C35H43O8), 379.1040 (C18H19O9), 409.1509 (C20H25O9), 309.1348 (C16H21O6), 391.1404 (C20H23O8), and 669.2924/389.1248 (C36H45O12/C20H21O8). Conclusion : Based on its inhibition of the LXRα-dependent signaling pathway, H. lyrata chloroform extract and HL-CF4 have prophylactic potentials for managing non-alcoholic fatty liver.
Keywords
Hemistepta lyrata chloroform fractionated extract; Hepatocyte-derived cell; Liver X receptor (LXR) ${\alpha}$; Non-alcoholic fatty liver; T0901317;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Kim SY, Kwon JN, Lee I, Hong JW, Choi JY, Park SH, et al. Research on anti-lipogenic effect and underlying mechanism of Laminaria japonica on experimental cellular model of non-alcoholic fatty liver disease. J Int Korean Med. 2014;35:175-83.
2 Lee HI, Kim YK, Lim HC, Lee DE, Kim EJ, Moon YH. Effects of Agastachis Herba extract and Lysimachiae Herba extract on the experimental cellular model of NFLDs induced by palmitic acid. J Int Korean Med. 2018;39:302-12.   DOI
3 Choi JY, Kim SY, Kwun MJ, Kim KH, Joo MS, Han CW. Effects of ethanol extract of Benincasa seeds on the experimental cellular model of nonalcoholic fatty liver disease. Korean J Orient Int Med. 2012;33:438-47.
4 Jang YS, Seo JY, Kwun MJ, Kwon JN, Lee I, Hong JW, et al. Effect of Phaseolus angularis seed on experimental cellular model of nonalcoholic fatty liver disease. Korean J Orient Physiol Pathol. 2013;27:802-8.
5 Lee HI, Kim JS, Kim CJ, Kim HN, Yang TJ, Jeong SJ, et al. Research on anti-lipogenic effect of Sobuncheong-eum on experimental cellular model of non-alcoholic fatty liver disease. Herbal Formular Sci. 2016;24:100-7.   DOI
6 Lee JW, Choi CW, Jeon SY, Han CW, Ha YJ. Effect of Jungmanbunso-hwan extract on HepG2 cell model of nonalcoholic fatty liver disease caused by palmitate. J Int Korean Med. 2016;37:442-52.
7 Kim CM, Shin MG, An DG, Lee KS. Unabridged Dictionary of Chinese Medicine. Seoul:Jungdam. 1997:1091-2.
8 Jung BS, Shin MK. Encyclopedia of illustrated Korean natural drugs. 1st ed. Seoul:Yeong Lim Sa. 1990:1053-4.
9 Nugroho A, Lim SC, Byeon JS, Choi JS, Park HJ. Simultaneous quantification and validation of caffeoylquinic acids and flavonoids in Hemistepta lyrata and peroxynitrite- scavenging activity. J Pharm Biomed Anal. 2013;76:139-44.   DOI
10 Dong FY, Guan LN, Zhang YH, Cui ZH, Wang L, Wang W. Acylated flavone C-glycosides from Hemistepta lyrata. J Asian Nat Prod Res. 2010;12:776-80.   DOI
11 Ha TJ, Jang DS, Lee KD, Lee JR, Park KH, Yang MS, Studies on the constituents from flowers of Hemisteptia lyrata (Bunge) (II). Kor J Pharmacogn. 2002;33:92-5.
12 Ha TJ, Lee KD, Lee JR, Lee J, Park KH, Yang MS. Studies on the constituents from flowers of Hemisteptia lyrata (Bunge) (I). Kor J Pharmacogn. 2001;32:238-41.
13 Jang DS, Yang MS, Park KH. Sesquiterpene lactone from Hemisteptia lyrata. Planta Med. 1998;64:289-90.   DOI
14 Kim JK, Park SY, Choi HY, Jang MH, Jung DH, Kim SC, et al. Anti-inflammatory effect of Hemistepta lyrata Bunge (Bunge) on LPS-induced inflammation in RAW 264.7 cells. Herbal Formula Sci. 2019;27:7-16.   DOI
15 Kim JK, Han NR, Park SM, Jegal KH, Jung JY, Jung EH, et al. Hemistepsin A alleviates liver fibrosis by inducing apoptosis of activated hepatic stellate cells via inhibition of nuclear factor-${\kappa}B$ and Akt. Food Chem Toxicol. 2020;135:111044.   DOI
16 Kim JK, Lee JE, Jung EH, Jung JY, Jung DH, Ku SK, et al. Hemistepsin A ameliorates acute inflammation in macrophages via inhibition of nuclear factor-${\kappa}B$ and activation of nuclear factor erythroid 2-related factor 2. Food Chem Toxicol. 2018;111:176-88.   DOI
17 Baek SY, Hwang UW, Suk HY, Kim YW. Hemistepsin A inhibits cell proliferation and induces G0/G1-phase arrest, cellular senescence and apoptosis via the AMPK and p53/p21 signals in human hepatocellular carcinoma. Biomolecules 2020;10:713.   DOI
18 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the $2-{\Delta}{\Delta}CT$ method. Methods. 2001;25:402-8.   DOI
19 Endo-Umeda K, Uno S, Fujimori K, Naito Y, Saito K, Yamagishi K, et al. Differential expression and function of alternative splicing variants of human liver X receptor ${\alpha}$. Mol Pharmacol. 2012;81:800-10.   DOI
20 Ma AZ, Song ZY, Zhang Q. Cholesterol efflux is $LXR{\alpha}$ isoform-dependent in human macrophages. BMC Cardiovasc Disord 2014;14:80.   DOI
21 Moslehi A, Hamidi-zad Z. Role of SREBPs in liver diseases: A mini review. J Clin Transl Hepatol. 2018;6:332-8.   DOI
22 Deng X, Cagen LM, Wilcox HG, Park EA, Raghow R, Elam MB. Regulation of the rat SREBP-1c promoter in primary rat hepatocytes. Biochem Biophys Res Commun. 2002;290:256-62.   DOI
23 Mitro N, Vargas L, Romeo R, Koder A, Saez E. T0901317 is a potent PXR ligand: implications for the biology ascribed to LXR. FEBS Lett. 2007;581:1721-6.   DOI
24 Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, et al. Role of LXRs in control of lipogenesis. Genes Dev. 2000;14:2831-8.   DOI
25 Fullerton MD. AMP-activated protein kinase and its multifaceted regulation of hepatic metabolism. Curr Opin Lipidol. 2016;27:172-80.   DOI
26 Sugimoto H, Okada K, Shoda J, Warabi E, Ishige K, Ueda T, et al. Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2010;298:G283-94.   DOI
27 Wang B, Tontonoz P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol. 2018;14:452-63.   DOI
28 Jin SH, Yang JH, Shin BY, Seo K, Shin SM, Cho IJ, et al. Resveratrol inhibits $LXR{\alpha}$ -dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction. Toxicol Appl Pharmacol. 2013;271:95-105.   DOI
29 Shin BY, Jin SH, Cho IJ, Ki SH. Nrf2-ARE pathway regulates induction of Sestrin-2 expression. Free Radic Biol Med. 2012;53:834-41.   DOI
30 Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011;13:376-88.   DOI
31 Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 2000;14:2819-30.   DOI
32 Ahn SB, Jang K, Jun DW, Lee BH, Shin KJ. Expression of liver X receptor correlates with intrahepatic inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Dig Dis Sci. 2014;59:2975-82.   DOI
33 Zhang Y, Breevoort SR, Angdisen J, Fu M, Schmidt DR, Holmstrom SR, et al. Liver LXR ${\alpha}$ expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest. 2012;122:1688-99.   DOI
34 Jadeja RN, Upadhyay KK, Devkar RV, Khurana S. Naturally occurring Nrf2 activators: potential in treatment of liver injury. Oxid Med Cell Longev. 2016;2016:3453926.
35 Hwahng SH, Ki SH, Bae EJ, Kim HE, Kim SG. Role of adenosine monophosphateactivated protein kinase-p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-alpha-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones. Hepatology 2009;49:1913-25.   DOI
36 Ding L, Oligschlaeger Y, Shiri-Sverdlov R, Houben T. Nonalcoholic fatty liver disease; in Handbook of experimental pharmacology. Germany:Springer. 2020.
37 Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S. Nonalcholic steatohepatitis: A review. JAMA. 2020;323:1175-83.   DOI
38 Zhang X, Liu J, Su W, Wu J, Wang C, Kong X, et al. Liver X receptor activation increases hepatic fatty acid desaturation by the induction of SCD1 expression through an $LXR{\alpha}$-SREBP1c-dependent mechanism. J Diabetes. 2014;6:212-20.   DOI