• Title/Summary/Keyword: Heat transfer simulation

Search Result 950, Processing Time 0.029 seconds

A Numerical Study on the Thermal Characteristics of Double Skin Vacuum Tubes with Coaxial Fluid Conduit (등축 유로 장착 이중 태양열 진공관의 열적 특성에 관한 수치해석적 연구)

  • Hyun, Jun-Ho;Park, Youn-Cheol;Chun, Won-Gee;Lee, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.567-570
    • /
    • 2006
  • A numerical study has been carried out for a solar water heater which consists of double skin solar vacuum tubes. Water is heated as it flows through the coaxial fluid conduit inserted in each tube. The space between the exterior of the fluid conduit and the glass tube is tilled with antifreeze solution. This is to facilitate heat transfer from the solar heated absorber surface to water and to prevent the functional problems due to freezing in frigid weather conditions. A one-dimensional steady state model is fully described which will be used to develop three-dimensional model using STAR-CD. These models could be used efficiently in designing double skin solar collector tubes with different geometrical parameters other than those considered in the present analysis. Results show a good agreement when compared with other experimental data demonstrating the reliability of the one-dimensional model employed.

  • PDF

Study on the Internal Flow of an Electric Oven with Variation of Steam Outlet Position (전기오븐의 스팀 출구위치에 따른 내부유동에 대한 연구)

  • Park, Young Hun;Kim, Yu Jin;Jung, Young Man;Park, Warn-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.450-456
    • /
    • 2013
  • The composite electric oven is one of the fixing utensil, various functions are required. Steam generating function, which is one of its functions, and allows various food cooking. The location of the outlet of the steam generator is designed around ease of installation, consideration of internal fluid is not. Distribution of the steam can not be non-uniformly. Accordingly, cooking time becomes longer, the energy consumption increases. As a result of the analysis, it was confirmed stagnation phenomenon of the internal flow through the interpretation of the calculations for the position of the outlet of the steam generator existing. Further, by computing the analysis of various locations of the outlet of the steam generator, we investigated the distribution and characteristics of the internal flow.

Prediction of Plate Deformation Considering Film Boiling in Water Cooling Process after Line Heating (선상가열시 수냉이 유발하는 막비등 현상을 고려한 판의 변형 예측)

  • Ha, Yun-Sok;Kim, Jung-Soo;Jang, Chang-Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.472-478
    • /
    • 2005
  • From a rapid cooling to a slow cooling in the actual cooling process in shipyards, the phase of steel becomes martensite, bainite, ferrite, and pearlite. In order to simulate the cooling process, heat transfer analysis was performed considering the effects of impinging water jet, film boiling, and radiation. From above simulation it is possible to find the cooling speed at the inherent strain region and volume percentage of all phases in that region. By the suggested method based on the precise material properties calculated from volume percentage of all phases, it will be possible to predict the plate deformations by line heating more precisely. It is verified by comparing with some experimental results that the present method is very effective and efficient.

Application of Solar Chimney System for Natural Ventilation in Underground Space (지하공간의 자연환기를 위한 태양 굴뚝 시스템의 응용)

  • Jang, Hyang-In;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • This study analyzed the performance of solar chimney system for natural ventilation in underground space. A mathematical model of the solar chimney was proposed in order to predict its performance under varying parameters and Korea climatic condition. Steady state heat transfer equations were set up using a energy balanced equations and solved using a inverse matrix method. Numerical simulation program to analyze system was developed by using MATLAB. As the results, the ventilation performance of the solar chimney was determined by the temperature difference of air channel and inlet, and the temperature difference was influenced by insolation, stack height and distance of air gab. Also the solar chimney system can provide $262.9m^3/h$ of annual average ventilation rate. Because seasonal differences of ventilation rate was calculated within 25%, the solar chimney system can be used for every season in Korea climatic condition. Through this study, performance of solar chimney system for natural ventilation was verified by numerical method. Consequently, the solar chimney system is proved to be effective device for natural ventilation utilizing at all times, and the additional studies should be made through the experimental method for imagineering and commercialization.

Numerical investigation on vortex behavior in wire-wrapped fuel assembly for a sodium fast reactor

  • Song, Min Seop;Jeong, Jae Ho;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.665-675
    • /
    • 2019
  • The wire-wrapped fuel bundle is an assembly design in a sodium-cooled fast reactor. A wire spacer is used to maintain a constant gap between rods and to enhance the mixing of coolants. The wire makes the flow complicated by creating a sweeping flow and vortex flow. The vortex affects the flow field and heat transfer inside the subchannels. However, studies on vortices in this geometry are limited. The purpose of this research is to investigate the vortex flow created in the wire-wrapped fuel bundle. For analysis, a RANS-based numerical analysis was conducted for a 37-pin geometry. The sensitivity study shows that simulation with the shear stress transport model is appropriate. For the case of Re of 37,100, the mechanisms of onset, periodicity, and rotational direction were analyzed. The vortex structures were reconstructed in a three-dimensional space. Vortices were periodically created in the interior subchannel three times for one wire rotation. In the edge subchannel, the largest vortex occurred. This large vortex structure blocked the swirl flow in the peripheral region. The small vortex formed in the corner subchannel was negligible. The results can help in understanding the flow field inside subchannels with sweeping flow and vortex structures.

Numerical investigation and optimization of the solar chimney performances for natural ventilation using RSM

  • Mohamed Walid Azizi;Moumtez Bensouici;Fatima Zohra Bensouici
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.521-533
    • /
    • 2023
  • In the present study, the finite volume method is applied for the thermal performance prediction of the natural ventilation system using vertical solar chimney whereas, design parameters are optimized through the response surface methodology (RSM). The computational simulations are performed for various parameters of the solar chimney such as absorber temperature (40≤Tabs≤70℃), inlet temperature (20≤T0≤30℃), inlet height of (0.1≤h≤0.2 m) and chimney width (0.1≤d≤0.2 m). Analysis of variance (ANOVA) was carried out to identify the design parameters that influence the average Nusselt number (Nu) and mass flow rate (ṁ). Then, quadratic polynomial regression models were developed to predict of all the response parameters. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are Nu=25.67 and ṁ=24.68 kg/h·m, corresponding to design parameters h=0.18 m, d=0.2 m, Tabs=46.81℃ and T0=20℃. The optimal ventilation flow rate is enhanced by about 96.65% compared to the minimum ventilation rate, while solar energy consumption is reduced by 49.54% compared to the maximum ventilation rate.

Experimental Study of Steam Reforming Assisted by Catalytic Combustion in Concentric Annular Reactor (촉매연소를 이용한 동심 원관형 반응기 내의 수증기 개질 반응에 관한 실험적 연구)

  • Ghang, Tae-Gyu;Yu, Sang-Seok;Kim, Yong-Mo;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.375-381
    • /
    • 2010
  • In this paper, the heat-transfer characteristics of steam reforming in an annular reactor are presented. Heat is supplied by the catalytic combustion of syn-gas. The thermal behaviors of exothermic and endothermic reactions in a directly coupled concentric-tube packed-bed reactor were investigated experimentally. The gas mixture supplied for catalytic combustion consisted of the off-gas emitted from MCFC anode. Methane in steam at a suitable S/C (steam-to-carbon) ratio was used in the reforming reactions. On the basis of the experimental results, a simple simulation was performed to predict the temperature profile required in the reforming side of the reactor to achieve optimum hydrogen yield. The results of this study may be utilized as reference data in future studies for further development of coupled reactors.

A Numerical Analysis on the Freeze Coating of a Non-Isothermal Flat Plate with a Binary Alloy (비등온 평판의 이성분 합금 냉각코팅에 관한 수치해석)

  • Nam, Jin-Hyeon;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1437-1446
    • /
    • 2000
  • A numerical analysis on the freeze coating process of a non-isothermal finite dimensional plate with a binary alloy is performed to investigate the growth and decay behavior of the solid and the mushy layer of the freeze coat and a complete procedure to calculate the process is obtained in this study. The continuously varying solid and mushy layers are immobilized by a coordinate transform and the resulting governing differential equations are solved by a finite difference technique. To account for the latent heat release and property change during solidification, proper phase change models are adopted. And the convection in the liquid melt is modeled as an appropriate heat transfer boundary condition at the liquid/mushy interface. The present results are compared with analytic solutions derived for the freeze coating of infinite dimensional plates and the discrepancy is found to be less than 0.5 percent in relative magnitude for all simulation cases. In addition the conservation of thermal energy is checked. The results show that the freeze coat grows proportional to the 1.2 square of axial position as predicted by analytic solutions ar first. But after the short period of initial growth, the growth rate of the freeze coat gradually decreases and finally the freeze coat starts to decay. The effects of various non-dimensional processing parameters on the behavior of freeze coat are also investigated.

Numerical Study of Bubble Motion During Nucleate Boiling on a Micro-Finned Surface (마이크로 핀 표면 핵비등에서의 기포거동에 대한 수치적 연구)

  • Lee, Woo-Rim;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1089-1095
    • /
    • 2011
  • Numerical simulation is performed for nucleate boiling on a micro-finned surface, which has been widely used to enhance heat transfer, by solving the equations governing the conservation of mass, momentum, and energy in the liquid and vapor phases. The bubble motion is determined by a sharp-interface level-set method, which is modified to include the effect of phase change and to treat the no-slip and contact-angle conditions, as well as the evaporative heat flux from the liquid microlayer on immersed solid surfaces such as micro fins and cavities. The numerical results for bubble formation, growth, and departure on a microstructured surface including fins and cavities show that the bubble behavior during nucleate boiling is significantly influenced by the fin-cavity arrangement and the fin-fin spacing.

Numerical Discussion on Natural Convection in Soils (지반내 자연대류에 대한 수치해석적 논의)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.35-47
    • /
    • 2017
  • Thermal behavior of soils is mainly focused on thermal conduction, and the study of natural convection is very limited. Increase of soil temperature causes natural convection due to buoyancy from density change of pore water. The limitations of the analysis using fluid dynamics for natural convection in the porous media is discussed and a new numerical analysis is presented for natural convection in porous media using THM governing equations fully coupled in the macroscopic view. Numerical experiments for thermal probe show increase in the uncertainty of thermal conductivity estimated without considering natural convection, and suggest appropriate experimental procedures to minimize errors between analytical model and numerical results. Burial of submarine power cable should not exceed the temperature changes of $2^{\circ}C$ at the depth of 0.2 m under the seabed, but numerical analysis for high permeable ground exceeds this criterion. Temperature and THM properties of the seafloor are important design factors for the burial of power cable, and in this case effects of natural convection should be considered. Especially, in the presence of heat sources in soils with high permeability, natural convection due to the variation of density of pore water should be considered as an important heat transfer mechanism.