DOI QR코드

DOI QR Code

마이크로 핀 표면 핵비등에서의 기포거동에 대한 수치적 연구

Numerical Study of Bubble Motion During Nucleate Boiling on a Micro-Finned Surface

  • Lee, Woo-Rim (Dept. of Mechanical Engineering, Sogang Univ.) ;
  • Son, Gi-Hun (Dept. of Mechanical Engineering, Sogang Univ.)
  • 투고 : 2011.04.19
  • 심사 : 2011.05.17
  • 발행 : 2011.10.01

초록

열전달 향상을 위한 방법으로 많이 사용되고 있는 마이크로 핀을 포함한 표면 위에서의 핵비등을 액상과 기상에서 질량 및 운동량, 에너지에 대한 지배 방정식을 풀어 수치해석을 수행하였다. 핵비등에서의 기포거동을 계산하기 위해 sharp-interface 레벨셋(level-set) 방법을 상변화 효과와 핀과 캐비티와 같은 잠긴 고체에서의 점착 조건 및 접촉각, 마이크로 액체층에서의 증발 열유속을 포함하도록 수정하였다. 핀과 캐비티를 포함한 표면에서의 기포 생성, 성장, 이탈에 대한 해석을 통하여 핀-캐비티 배열, 핀-핀 간격이 핵비등에서의 기포거동에 중요한 역할을 하는 것을 확인하였다.

Numerical simulation is performed for nucleate boiling on a micro-finned surface, which has been widely used to enhance heat transfer, by solving the equations governing the conservation of mass, momentum, and energy in the liquid and vapor phases. The bubble motion is determined by a sharp-interface level-set method, which is modified to include the effect of phase change and to treat the no-slip and contact-angle conditions, as well as the evaporative heat flux from the liquid microlayer on immersed solid surfaces such as micro fins and cavities. The numerical results for bubble formation, growth, and departure on a microstructured surface including fins and cavities show that the bubble behavior during nucleate boiling is significantly influenced by the fin-cavity arrangement and the fin-fin spacing.

키워드

참고문헌

  1. Khan, N. and Toh, K. C., 2004, "Pool Boiling Heat Transfer Enhancement by Surface Modification/Micro Structures for Electronics Cooling: a Review," Proc. 6th Electronics Packaging Technology Conference, Toh, K. C. eds., pp. 273-280.
  2. Wei, J. J., Zhao, J., Yuan, M. and Xue, Y., 2009, "Boiling Heat Transfer Enhancement by Using Micro- Pin-Finned Surface for Electronics Cooling," Microgravity Sci. Technol., Vol. 21(Suppl 1), pp. S159-S173.
  3. Klien, G. J. and Westwater, J. W., 1971, "Heat Transfer from multiple spines to boiling liquids," AIChE J., Vol. 17(5), pp. 1050-1056. https://doi.org/10.1002/aic.690170507
  4. Gulielmini, G., Misale, M. and Schenone, C., 1996, "Experiments on Pool Boiling of a Dielectric Fluid on Extended Surfaces," Int. Comm. Heat Mass Transfer, Vol. 23, pp.451-462. https://doi.org/10.1016/0735-1933(96)00030-9
  5. Yu., C. and Lu, D., "Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72," 2007, Int. J. Heat Mass Trans., Vol. 50, pp.3624-3637. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.003
  6. Lee, R. C. and Nydahl, J. E., 1989, "Numerical Calculation of Bubble Growth in Nucleate Boiling from Inception through Departure," J. Heat Transfer, Vol. 111, pp. 474-479. https://doi.org/10.1115/1.3250701
  7. Welch, S. W. J., 1998, "Direct Simulation of Vapor Bubble Growth," Int. J. Heat Mass Transfer, Vol. 41, pp. 1655-1666. https://doi.org/10.1016/S0017-9310(97)00285-8
  8. Son, G., Dhir, V. K. and Ramanujapu, N., 1999, "Dynamics and Heat Transfer Associated with a Single Bubble during Nucleate Boiling on a Horizontal Surface," J. Heat Transfer, Vol. 121, pp. 623-631. https://doi.org/10.1115/1.2826025
  9. Lee, W. and Son, G., 2010, "Numerical Analysis of Bubble Growth and Departure from a Microcavity," Numer. Heat Transfer B, Vol. 58, pp. 323-342. https://doi.org/10.1080/10407790.2010.522871
  10. Lee, W. and Son, G., 2011, "Numerical Simulation of Boiling Enhancement on a Microstructured Surface," Int. Commun. Heat Mass Transfer, Vol. 38, pp. 168-173. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.017