• 제목/요약/키워드: Heat transfer model

검색결과 1,848건 처리시간 0.032초

접시형 태양열 흡수기의 Transient 열전달 특성에 대한 수치해석 연구 (Analysis of Transient Heat Transfer Characteristics of Dish-Type Solar Receiver System)

  • 이주한;서주현;오상준;이진규;서태범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2094-2099
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

효율적인 열 방출을 하기 위한 방열판의 형상 설계에 관한 연구 (A Study on the Shape Design of a Radiator Panel for Effective Heat Release)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제15권5호
    • /
    • pp.25-30
    • /
    • 2016
  • This study investigates the heat transfer due to a change in the shape of a radiator panel inside a computer. As with models of radiator panels, models have the same surface areas. As the gap between heat transfer surfaces in model 1 becomes wider than those in model 2, the heat transfer at model 1 becomes smoother than that of model 2. By comparing the cooling processes between models 1 and 2 with respect to natural convection, a maximum temperature of $47.432^{\circ}C$ at model 1 becomes lower than that of model 2, at $49.821^{\circ}C$. Within the radiator panel, model 1 has been shown to be more effective than model 2. Accordingly, these results can be effectively applied to the shape design of radiator panels to imbue them with smoother and faster heat transfer through the finite element method.

Heat Transfer Enhancement for Fin-Tube Heat Exchanger Using Vortex Generators

  • Yoo, Seong-Yeon;Park, Dong-Seong;Chung, Min-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.109-115
    • /
    • 2002
  • Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin -circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of finn-flat tube heat exchanger without vertex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger At the same time, pressure losses for four types of heat exchanger is measured and compared.

로타리 킬른형 도시 쓰레기 소각로의 전열해석 (Thermal Analysis of Rotary Kiln Incinerator of Municipal Solid Waste)

  • 박상일;박영재
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2100-2108
    • /
    • 1991
  • 본 연구에서는 최근 한국동력자원연구소에서 개발한 로타리 킬른형의 도시 쓰 레기 소각로에 대하여 전열해석한 것으로 이 해석을 통하여 소각로에서의 쓰레기, 배 기가스 그리고 로벽에서의 온도 분포를 예측할 수 있다.

스케일 층의 생성 및 성장을 고려한 가열로 내 슬랩의 승온 특성 해석에 관한 연구 (A Numerical Study on the Slab Heating Characteristics in a Reheating Furnace with the Formation and Growth of Scale on the Slab Surface)

  • 이동은;장정현;김종민;홍동진;박해두;박윤범;김만영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.109-112
    • /
    • 2008
  • In this work, a mathematical heat transfer model of a walking-beam type reheating furnace that can predict the formation and growth of the scale layer, which is produced due to oxidative reaction between the furnace oxidizing atmosphere and the steel surface in the reheating furnace, has been developed. The model can also predict the heat flux distribution within the furnace and the temperature distribution in the slab and scale throughout the reheating furnace process by considering the heat exchange between the slab and its surroundings in the furnace, including radiant heat transfer among the slabs, the skids, the hot gases and the furnace wall as well as the gas convection heat transfer in the furnace. Using the model developed in this work, the effects of the scale layer on the heat transfer characteristics and temperature behavior of the slab is investigated. A comparison is also made between the predictions of the present model and the data from an in situ measurement in the furnace, and a reasonable agreement is founded.

  • PDF

점탄성 유체의 부력에 의한 열전달 수치해석 (Numerical analysis on heat transfer due to buoyancy force of viscoelastic fluid)

  • 안성태;손창현;신세현
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.9-16
    • /
    • 1999
  • The present study investigates flow character and heat transfer behaviors of viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. An axially-constant heat flux on bottom wall and peripherally constant temperature boundary condition(H1) was adopted. The Reiner-Rivlin fluid model is used as the normal stress model for the viscoelastic fluid and temperature-dependent viscosity model is adopted. The present results show a signifiant change of the main flow field which causes a large heat transfer enhancement. This phenomena can be explained by the combined effect of buoyancy, temperature-dependent viscosity and viscoelastic property on the flow.

  • PDF

층류확산화염의 출사열전달 해석에 관한 연구 (A study on the radiative heat transfer analysis in a laminar diffusion flame)

  • 이도형;최병륜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.48-55
    • /
    • 1989
  • The purpose of present study is to evaluate both the radiative heat loss from a flame and the local formation and oxidation rate of soot. The present paper describes a comprehensive mathematical model to deal with combustion and radiative heat transfer simultaneously. The involved radiative heat transfer model was based on the "heat ray tracing method" originally proposed by Hayasaka et al.. Some predicted results were compared with the experiments.periments.

  • PDF

가열로 내 슬랩의 온도 예측을 위한 2차원 열전달 모델 (2D Heat Transfer Model for the Prediction of Temperature of Slab in a Direct-Fired Reheating Furnace)

  • 이동은;박해두;김만영
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.950-956
    • /
    • 2006
  • A mathematical heat transfer model for the prediction of heat flux on the slab surface and temperature distribution in the slab has been developed by considering the thermal radiation in the furnace and transient conduction governing equations in the slab, respectively. The furnace is modeled as radiating medium with spatially varying temperature and constant absorption coefficient. The slab is moved with constant speed through non-firing, charging, preheating, heating, and soaking zones in the furnace. Radiative heat flux which is calculated from the radiative heat exchange within the furnace modeled using the FVM by considering the effect of furnace wall, slab, and combustion gases is applied as the boundary condition of the transient conduction equation of the slab. Heat transfer characteristics and temperature behavior of the slab is investigated by changing such parameters as absorption coefficient and emissivity of the slab. Comparison with the experimental work shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace.

수냉식 수직평판 흡수기의 액막 열 및 물질전달에 관한 수치적 연구 (Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber)

  • ;문춘근;김은필;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.593-602
    • /
    • 2004
  • This paper is a study on the model of simultaneous heat and mass transfer process in the absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber. The model can predict temperature and concentration profiles as well as the effect of Reynolds number on them. Also. the variations of the absorption heat and mass fluxes. and the heat and mass transfer coefficients have been investigated. The numerical result shows that the interface temperature and concentration decrease as film Reynolds number does. The absorption heat and mass fluxes, and the heat and mass transfer coefficients get their maximum values adjacent to the inlet solution. Analyses on a constant wall temperature condition have been also carried out to exam the reliability of the present numerical method by comparing to previous investigations.

Direct-contact heat transfer of single droplets in dispersed flow film boiling: Experiment and model assessment

  • Park, Junseok;Kim, Hyungdae
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2464-2476
    • /
    • 2021
  • Direct-contact heat transfer of a single saturated droplet upon colliding with a heated wall in the regime of film boiling was experimentally investigated using high-resolution infrared thermometry technique. This technique provides transient local wall heat flux distributions during the entire collision period. In addition, various physical parameters relevant to the mechanistic modelling of these phenomena can be measured. The obtained results show that when single droplets dynamically collide with a heated surface during film boiling above the Leidenfrost point temperature, typically determined by droplet collision dynamics without considering thermal interactions, small spots of high heat flux due to localized wetting during the collision appear as increasing Wen. A systematic comparison revealed that existing theoretical models do not consider these observed physical phenomena and have lacks in accurately predicting the amount of direct-contact heat transfer. The necessity of developing an improved model to account for the effects of local wetting during the direct-contact heat transfer process is emphasized.