DOI QR코드

DOI QR Code

Direct-contact heat transfer of single droplets in dispersed flow film boiling: Experiment and model assessment

  • Park, Junseok (Department of Nuclear Engineering, Kyung Hee University) ;
  • Kim, Hyungdae (Department of Nuclear Engineering, Kyung Hee University)
  • Received : 2020.08.10
  • Accepted : 2021.02.15
  • Published : 2021.08.25

Abstract

Direct-contact heat transfer of a single saturated droplet upon colliding with a heated wall in the regime of film boiling was experimentally investigated using high-resolution infrared thermometry technique. This technique provides transient local wall heat flux distributions during the entire collision period. In addition, various physical parameters relevant to the mechanistic modelling of these phenomena can be measured. The obtained results show that when single droplets dynamically collide with a heated surface during film boiling above the Leidenfrost point temperature, typically determined by droplet collision dynamics without considering thermal interactions, small spots of high heat flux due to localized wetting during the collision appear as increasing Wen. A systematic comparison revealed that existing theoretical models do not consider these observed physical phenomena and have lacks in accurately predicting the amount of direct-contact heat transfer. The necessity of developing an improved model to account for the effects of local wetting during the direct-contact heat transfer process is emphasized.

Keywords

Acknowledgement

This work was supported by Korea Hydro & Nuclear Power Co., Ltd. (No. 2018-TECH-08). This work was also supported by National Research Foundation of Korea (NRF) funded by the Korean government (MSIT: Ministry of Science and ICT) (2017M2A8A4015283).

References

  1. M. Andreani, G. Yadigaroglu, Dispersed Flow Film Boiling: an Investigation of the Possibility to Improve the Models Implemented in the NRC Computer Codes for the Reflooding Phase of the LOCA, 1992, U.S. Nuclear Regulatory Commission, NUREG/IA-0042.
  2. D.L. Aumiller, G.W. Swartele, M.J. Meholic, L.J. Lloyd, F.X. Buschman Bettis, COBRA-IE: A NEW SUB-CHANNEL ANALYSIS CODE, International Topical Meeting on Nuclear Reactor Thermal Hydraulics, IL, Chicago, 2015. August 30-September 4.
  3. J.G. Leidenfrost, A tract about some qualities of common water, Int. J. Heat Mass Tran. 9 (1966) 1153-1166. https://doi.org/10.1016/0017-9310(66)90111-6
  4. R.P. Forslund, W.M. Rohsenow, Dispersed flow film boiling, J. Heat transfer 90 (1968) 399-407. https://doi.org/10.1115/1.3597531
  5. S.M. Bajorek, M.Y. Young, Direct contact heat transfer model for dispersedflow film boiling, Nucl. Tech. 132 (2000) 375-388. https://doi.org/10.13182/NT00-A3151
  6. Y. Guo, K. Mishima, A non-equilibrium mechanistic heat transfer model for post dryout dispersed flow regime, Exp. Therm. Fluid Sci. 23 (2002) 569-861.
  7. F. Lelong, M. Gradeck, N. Seiler, P. Ruyer, G. Castanet, P. Dunand, Behavior of Liquid Droplets Bouncing onto a Hot Slab, Annual conference on Liquid Atomization and Spray systems, Brno, Czech Republic, 2010. September 6-8.
  8. G.E. Kendall, W.M. Rohsenow, Heat Transfer to Impacting Drops and Post Critical Heat Flux Dispersed Flow, Department of mechanical engineering, Massachusetts Institute of Technology, 1978. Technical report No.85694-100.
  9. J. Senda, K. Yamada, The heat transfer characteristics of a small droplet impinging upon a hot surface, International Journal of the Japan Society of Mechanical Engineers 31 (1988) 105-111.
  10. T. Ueda, T. Enomoto, M. Kanetsuki, Heat transfer characteristics and dynamic behavior of saturated droplets impinging on a heated vertical surface, Bull. Jpn. Soc. Mech. Eng. 22 (1979) 724-732. https://doi.org/10.1299/jsme1958.22.724
  11. Z. Wang, W. Qu, J. Xiong, M. Zhong, Y. Yang, Investigation on effect of surface properties on droplet impact cooling of cladding surfaces, Nucl. Eng. Tech. 52 (2020) 508-519. https://doi.org/10.1016/j.net.2019.08.022
  12. D. Chatzikyriakou, S.P. Walker, C.P. Hale, G.F. Hewitt, The measurement of heat transfer from hot surfaces to nonwetting droplets 54 (2011) 1432-1440.
  13. J. Jung, S. Jeong, H. Kim, Investigation of single-droplet/wall collision heat transfer characteristics using infrared thermometry, Int. J. Heat Mass Tran. 92 (2016) 774-783. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.050
  14. J. Park, H. Kim, Effects of droplet temperature on heat transfer during collision on a heated wall above the Leidenfrost temperature, J. ILASS-Korea 21 (2016) 78-87. https://doi.org/10.15435/JILASSKR.2016.21.2.78
  15. S. Inada, Y. Miyasaka, K. Nishida, Transient heat transfer for water drop impinging on a heated surface, Bull. Jpn. Soc. Mech. Eng. 28 (1985) 2675-2681. https://doi.org/10.1299/jsme1958.28.2675
  16. Ge Yang, L.-S. Fan, 3-D modeling of the dynamics and heat transfer characteristics of subcooled droplet impact on a surface with film boiling, Int. J. Heat Mass Tran. 49 (2006) 4231-4249. https://doi.org/10.1016/j.ijheatmasstransfer.2006.03.023
  17. A.V. Gulikov, I.I. Berlin, A.V. Karpyshev, S.V. Losev, The effect of liquid subcooling on the collision of a solitary droplet with a heated wall, High Temp. 38 (2000) 161-164. https://doi.org/10.1007/BF02755586
  18. M.J. Thurgood, J.M. Kelly, T.E. Guidotti, R.J. Kohrt, K.R. Crowell, COBRA/TRAC-A Thermal-Hydraulics Code for Transient Analysis of Nuclear Reactor Vessels and Primary Coolant Systems, U.S. Nuclear Regulatory Commission, 1983. NUREG/CR-3046.
  19. S.J. Ha, C.E. Park, K.D. Kim, C.H. Ban, Development of the SPACE code for nuclear power plant, Nucl. Eng. Tech. 43 (2011) 45-62. https://doi.org/10.5516/NET.2011.43.1.045
  20. K.J. Baumeister, T.D. Hamill, G.J. Schoessow, A Generalized Correlation of Vaporization Times of Drops in Film Boiling on a Flat Plate, National Aeronautics and SPACE Administration, 1966. NASA TM X-52177.
  21. L. Bolle, J.C. Moureau, Spray cooling of hot surface, Multiphas. Sci. Technol. 1 (1982) 76-90.
  22. A.L. Biance, F. Chevy, C. Clanet, G. Lagudeau, D. Quere, On the elasticity of an inertial liquid shock, J. Fluid Mech. 554 (2006) 47-66. https://doi.org/10.1017/S0022112006009189
  23. L. Rayleigh, On the capillary phenomena of jets, Proc. Roy. Soc. Lond. 29 (1879) 71-97. https://doi.org/10.1098/rspl.1879.0015
  24. J. Park, H. Kim, An experimental investigation on dynamics and heat transfer associated with a single droplet impacting on a hot surface above the Leidenfrost point temperature, Kerntechnik 81 (2016) 1-11. https://doi.org/10.3139/124.016012
  25. E.R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik, Sapphire: Materials, Manufacturing, Applications, first ed., Springer US, 2009.
  26. P.K. Meduri, G.R. Warrier, V.K. Dhir, Wall heat flux partitioning during subcooled forced flow film boiling of water on a vertical surface, Int. J. Heat Mass Tran. 52 (2009) 3534-3546. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.040
  27. C.O. Pedersen, An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface, Int. J. Heat Mass Tran. 13 (1970) 369-372. https://doi.org/10.1016/0017-9310(70)90113-4
  28. T. Tran, H.J.J. Staat, A. Susarrey-arce, T. Foertsch, A. Houselt, H.J.G.E. Gardeniers, A. Prosperetti, D. Lohse, C. Sun, Droplet impact on superheated micro-structured surfaces, Soft Matter 9 (2013) 3272-3282. https://doi.org/10.1039/c3sm27643k
  29. H. Fujimoto, N. Hatta, K. Kinoshita, O. Takahashi, H. Takuda, Collision Dynamics of a Water Droplet Impinging on a Rigid Surface above the Leidenfrost Temperature, vol. 35, Iron and Steel Institute of Japan, 1995, pp. 50-55.
  30. A. Frohn, A. Karl, Experimental investigation of interaction processes between droplets and hot walls, Phys. Fluids 12 (2000) 785-796. https://doi.org/10.1063/1.870335
  31. T. Tran, H.J.J. Staat, A. Prosperetti, C. Sun, D. Lohse, Drop impact on superheated surfaces, Phys. Rev. Lett. 108 (2012), 36101. https://doi.org/10.1103/PhysRevLett.108.036101
  32. K.S. Hamdan, D.E. Kim, S.K. Moon, Droplets behavior impacting on a hot surface above the Leidenforst temperature, Ann. Nucl. Energy 80 (2015) 338-347. https://doi.org/10.1016/j.anucene.2015.02.021
  33. J. Park, H. Kim, S. Bae, K. Kim, The effect of impact velocity on droplet-wall collision heat transfer above the Leidenfrost point temperature, Trans. Korean Society of Mech. Eng. B 39 (2015) 567-578.
  34. J. Park, D.E. Kim, Dynamics of liquid drops levitating on superheated surfaces, Int. J. Therm. Sci. 152 (2020), 106321. https://doi.org/10.1016/j.ijthermalsci.2020.106321