• 제목/요약/키워드: Heat dissipation materials

검색결과 114건 처리시간 0.026초

LED 조명용 카본 마그네슘 신소재 방열 특성 연구 (A Study of Characteristics of Heat Dissipation Carbon Magnesium New Materials of LED Lighting)

  • 손일수;신성식
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.915-919
    • /
    • 2013
  • This is the study on the development of fusion heat dissipation of carbon magnesium materials. The purpose of this study is for effective utilization of heat emission which is the core of LED lighting. The result of study enabled the derivation of side satisfying result of making the surface temperature of lighting to be below $70^{\circ}C$ (actual measurement: $58^{\circ}C$) using magnesium. The lighting products that use magnesium was made possible based on the result of this study. Also from the performance aspect such as light distribution, the measurement of light efficiency demonstrated the level of 90 lm/W. Therefore the commercialization of lighting was made possible and the efficiency could be further enhanced by supplementation of LED performance.

탄소나노튜브 양에 따른 CMP-PLA 방열 소재의 특성 (Characteristics of CMP-PLA Heatsink Materials with Carbon Nanotube Contents)

  • 김영곤
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.924-927
    • /
    • 2013
  • In this study, we proposed CMP-PLAs to replace the Al heat sinks as heat sink materials, and investigated heat dissipation characteristics of the LED lighting devices using them. The crystallinity of the proposed CMP-PLA heat sinks decreased with increasing carbon nanotube contents in CMP-PLA. However, the thermal conductivity was improved with the increase of the carbon nanotube contents. The heat dissipation characteristics of the LED lighting devices using CMP-PLA heat sinks was improved with increasing carbon nanotube contents in CMP-PLA. For the LED lighting devices using CMP-PLA heat sinks with 40% carbon nanotube contents, the initial temperature measured at the heat sink plate was $27^{\circ}C$, which increased as time, and it was saturated around $56^{\circ}C$ after an hour. The LED lighting devices using CMP-PLA heat sinks are expected to be functional materials that can reduce their weight and improve their electric properties, compared to those using existing Al heat sinks.

태양광 패널 적용 방열용 탄소소재의 제조 및 열전달 수치해석 (Numerical Analysis of Heat Transfer and Fabrication of Carbon Material for Heat Dissipation in Solar Panel)

  • 박헌수;강철희;김홍건
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.82-90
    • /
    • 2019
  • This analysis demonstrates the effective removal of heat generated from a solar panel's output degradation factor solar cells (the solar panel's output deterioration factor), and solves the problems of oxidation and corrosion in existing metal heat sinks. The heat-dissipating test specimen was prepared using carbon materials; then, its thermal conductivity and its effectiveness in reducing temperatures were studied using heat transfer numerical analysis. As a result, the test specimen of the 30g/㎡ basis weight containing 80% of carbon fiber impregnated with carbon ink showed the highest thermal conductivity 6.96 W/(m K). This is because the surface that directly contacted the solar panel had almost no pores, and the conduction of heat to the panels appeared to be active. In addition, a large surface area was exposed to the atmosphere, which is considered advantageous in heat dissipation. Finally, numerical analysis confirmed the temperature reduction effectiveness of 2.18℃ in a solar panel and 1.08℃ in a solar cell, depending on the application of heat dissipating materials.

다공성 알루미늄 방열핀의 성능특성 연구 (The Performance Characteristics of the Open Celled Aluminum Foam Applied for Heat Dissipation)

  • 김종수;이효진
    • 한국태양에너지학회 논문집
    • /
    • 제23권2호
    • /
    • pp.91-98
    • /
    • 2003
  • Experimental study for a porous aluminum heat dissipator/or heat sink made by casting method is conducted to evaluate the performance of the porous aluminum heat sinks. The parameters applied for the present study are the manufacturing method. various bonding materials for the bottom plate of heat sink, and their different material, pore size, etc.. The casting method for porous aluminum heat sink is suggested for the best performance of heat dissipation in this experiment. The bottom plate applied by melting aluminum is introduced and proved their excellent characteristics compared with brazing, soldering, and bonding methods. In the present experiment, aluminum with different conductivities, such as AC8A and pure aluminum, are tested and the pure aluminums with the higher conductivity than AC8A shows their improvement of the performance. And the proper dimensions related to the pore size and the height of porous aluminum heat sinks are proposed in the present study.

사포, 샌드블라스트로 표면 거칠기 처리에 따른 알루미늄 판의 방열 효율 증대 (Increase heat dissipation efficiency of Al plate according to surface roughness treatment by sandpaper or sandblast)

  • 이동희;이종현
    • 한국산학기술학회논문지
    • /
    • 제20권1호
    • /
    • pp.170-178
    • /
    • 2019
  • 최근 에너지 절감에 대한 관심도가 높아짐에 따라 에너지 소비가 높은 형광등과 백열등을 대체하는 친환경소재인 LED의 조명을 활용하는 움직임이 활발하다. 그러나, 고출력 LED의 경우 발열에 의한 열화현상 때문에 수명이 단축되는 현상이 발생하게 된다. 이에 대한, 해결방안으로 본 논문은 LED Packing중 방열판표면의 거칠기 처리를 통하여 열전달 계수를 증대시킴으로서 LED 수명연장 효과를 평가하였다. 거칠기 공정은 사포 및 샌드블라스트를 이용하여 진행하였다. 각 표면처리 공정에 따른 거칠기 및 표면적 변화를 정량적으로 평가하였으며, 열전달 계수를 측정하였다. 샌드블라스트, 사포를 이용하여 알루미늄 표면에 거칠기처리를 진행했을 경우 미 처리 시 보다 높은 대류 열전달 계수를 얻을 수 있었고, 샌드블라스트 처리 시 약 82.76%의 높은 방열 효율 향상을 얻을 수 있어, 이를 방열판에 적용할 시 큰 경제적 부담 없이 기존대비 더 높은 방열효율 증대를 통해 LED 수명을 대폭 연장 시킬 것으로 기대된다.

복합봉재 압출에 의한 에너지 소산의 영향에 관한 연구 (A Study on the Effect of Energy Dissipation in Extruding Clad Rod)

  • 김창훈
    • 한국기계가공학회지
    • /
    • 제5권2호
    • /
    • pp.56-64
    • /
    • 2006
  • Rapid progress in many branches of technology has led to a demand on new materials such as high strength light weight alloys, powdered alloys and composite materials. The hydrostatic extrusion is essentially a method of extruding a clad rod through a die. In order to investigate the effect of the process conditions such as friction heat, deformation and clad thickness on the clad extrusion process, viscoplastic finite element simulations were conducted. A specific model for theoretical analysis used in this study is The single scalar variable version of Hart's model. An experiment also has been carried out using 1.5MN hydrostatic extruder with variable speed ram, LVDT and load cell for comparison. It is found that the hydrostatic extrusion pressure considering the effect of heat dissipation in this theoretical work was closer to the experimental pressure than the isothermal hydrostatic extrusion pressure.

  • PDF

탄소 복합재 기반 전자파 차폐 및 고방열 일체형 필름 연구동향 (Research Trends of Carbon Composite Film with Electromagnetic Interference Shielding and High Heat Dissipation)

  • 박성현;김명훈;김광석
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.1-10
    • /
    • 2021
  • 최근 전자 부품의 소형화, 고집적화가 진행되고 있으며, 소형화된 전자기기는 작은 면적과 얇은 두께로 전자파 간섭 및 발열문제를 해결해야 한다. 그래핀(Graphene) 복합재와 그라파이트(Graphite) 복합재는 가벼우면서도 우수한 전기 전도성과 열전도도로 전자파 차폐와 방열 문제를 해결할 수 있는 소재이다. 최근 합성 기술과 복합재 제조기술이 발전함에 따라 그래핀과 그라파이트 복합재를 다양한 분야에 적용하기 위한 연구들이 진행되고 있으며, 본 연구에서는 그래핀과 그라파이트를 이용하여 전자파 차폐 및 방열 특성을 동시에 가지는 복합재 필름을 제안한 최근 연구를 알아보고자 한다.

알루미늄 합금의 복사방열향상을 위한 코팅연구 (The Study on Coatings to Improve the Radiative Heat Dissipation of Aluminum Alloy)

  • 서미희;김동현;이정훈;정원섭
    • 한국표면공학회지
    • /
    • 제46권5호
    • /
    • pp.208-215
    • /
    • 2013
  • The aim of the present study was to improve the radiative heat dissipation of aluminum alloy, Al 1050. Resin/CuO coating and Cu/CuO composite plating were applied on aluminum alloy to improve the radiative heat dissipation. Resin/CuO coating was made using thermosetting silicon resin and Cu/CuO composite plating was made in pyrophosphate copper plating bath. Radiant heat flux($W/m^2$) was measured by self-produced radiant heat measurement device to compare each specimen. The cross section of specimen and chemical bonding of surface were analyzed by FE-SEM, XPS and FT-IR. As a result, radiant heat of Resin/CuO coating was higher than Cu/CuO composite plating due to the adhesion with aluminum plate and the difference in chemical bonding. But, Both of them were higher than aluminum alloy. In order to confirm the result of experiment, aluminum plate, Resin/CuO coating and Cu/CuO composite plating sample were applied LED and measured the LED temperature. As a result, LED temperature of samples were matched previous results and confirmed coated samples were lower about 10 degrees than the aluminum alloy.

복사에너지를 이용한 TIM소재의 방열 특성 향상을 위한 연구 (Study on Improvement of Heat Dissipation Characteristics of TIM Material Using Radiant Energy)

  • 황명원;김도형;정우창;정원섭
    • 한국표면공학회지
    • /
    • 제52권2호
    • /
    • pp.58-61
    • /
    • 2019
  • The aim of this study is to quantitatively demonstrate the possibility of heat transfer by thermal radiation by comparing heat transfer by conventional heat transfer and radiation by radiation. 1) The heat transfer was measured by using filler of TIM material with low thermal conductivity (CuS). As a result, heat transfer was easier than ceramic with high thermal conductivity ($Al_2O_3$ and $Si_3N_4$). 2) The reason for this is thought to be that the infrared wave due to radiation of the air diaphragm has moved easily. 3) From the above results, the heat dissipation of the TIM material indicates the possibility of heat transfer by thermal radiation.

Metal PCB에 있어서 양극산화법으로 제작한 Al2O3절연막의 방열특성 (Heat dissipation of Al2O3 Insulation layer Prepared by Anodizing Process for Metal PCB)

  • 조재승;김정호;고상원;임실묵
    • 한국표면공학회지
    • /
    • 제48권2호
    • /
    • pp.33-37
    • /
    • 2015
  • High efficiency LED device is being concerned due to its high heat loss, and such heat loss will cause a shorter lifespan and lower efficiency. Since there is a demand for the materials that can release heat quickly into the external air, the organic insulating layer was required to be replaced with high thermal conductive materials such as metal or ceramics. Through anodizing the upper layer of Al, the Breakdown Voltage of 3kV was obtained by using an uniform thickness of $60{\mu}M$ aluminum oxide($Al_2O_3$) and was carried out to determine the optimum process conditions when thermal cracking does not occur. Two Ni layers were formed above the layer of $Al_2O_3$ by sputtering deposition and electroplating process, and saccharin was added for the purpose of minimizing the remain stress in electroplating process. The results presented that the 3-layer film including the Ni layer has an adhesive force of 10N and the thermal conductivity for heat dissipation is achieved by 150W/mK level, and leads to improvement about 7 times or above in thermal conductivity, as opposed to the organic insulation layer.