DOI QR코드

DOI QR Code

Research Trends of Carbon Composite Film with Electromagnetic Interference Shielding and High Heat Dissipation

탄소 복합재 기반 전자파 차폐 및 고방열 일체형 필름 연구동향

  • Park, Seong-Hyun (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Myounghun (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Kwang-Seok (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology)
  • 박성현 (한국생산기술연구원 탄소경량소재응용연구그룹) ;
  • 김명훈 (한국생산기술연구원 탄소경량소재응용연구그룹) ;
  • 김광석 (한국생산기술연구원 탄소경량소재응용연구그룹)
  • Received : 2021.12.20
  • Accepted : 2021.12.29
  • Published : 2021.12.30

Abstract

Recently, electronic components are becoming smaller and highly integrated. As a result, electromagnetic interference (EMI) and heat generation problems must be solved simultaneously with a small area and thickness. Graphene composites and graphite composites are lightweight materials that can simultaneously solve EMI shielding and heat dissipation problems with excellent electrical and thermal conductivity. With the recent development of synthetic technology and composite manufacturing technology, the research to application of their composites is increasing. In this paper, we reviewed the latest researches on composite films of graphene and graphite for EMI shielding and heat dissipation.

최근 전자 부품의 소형화, 고집적화가 진행되고 있으며, 소형화된 전자기기는 작은 면적과 얇은 두께로 전자파 간섭 및 발열문제를 해결해야 한다. 그래핀(Graphene) 복합재와 그라파이트(Graphite) 복합재는 가벼우면서도 우수한 전기 전도성과 열전도도로 전자파 차폐와 방열 문제를 해결할 수 있는 소재이다. 최근 합성 기술과 복합재 제조기술이 발전함에 따라 그래핀과 그라파이트 복합재를 다양한 분야에 적용하기 위한 연구들이 진행되고 있으며, 본 연구에서는 그래핀과 그라파이트를 이용하여 전자파 차폐 및 방열 특성을 동시에 가지는 복합재 필름을 제안한 최근 연구를 알아보고자 한다.

Keywords

Acknowledgement

본 연구는 전라북도 뿌리기술 고도화를 위한 인프라 활용 기술개발지원사업(EM210019)과 중소벤처기업부와 한국산업기술진흥원의 "지역특화산업육성+(R&D, S3094358)"사업의 지원을 받아 수행된 연구결과입니다.

References

  1. T. Sudo, H. Sasaki, N. Masuda and J. L. Drewniak, "Electromagnetic Interference (EMI) of System-on-Package (SOP)", IEEE Trans. Adv. Packag., 27(2), 304-314 (2004). https://doi.org/10.1109/TADVP.2004.828817
  2. C. Zweben, "Advanced Composites And Other Advanced Materials For Electronic Packaging Thermal Management", Proc. International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No. 01TH8562), IEEE, 360-365 (2001).
  3. A. L. Moore, L. Shi, "Emerging challenges and materials for thermal management of electronics", Mater. Today, 17(4), 163-174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
  4. A. Iqbal, P. Sambyal and C. M. Koo, "2D MXenes for Electromagnetic Shielding: A Review", Adv. Funct. Mater., 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
  5. F. M. Oliveira, R. Gusmao, "Recent Advances in the Electromagnetic Interference Shielding of 2D Materials beyond Graphene", ACS Appl. Electron. Mater., 2(10), 3048-3071 (2020). https://doi.org/10.1021/acsaelm.0c00545
  6. S. Geetha, K. K. Satheesh Kumar, C. R. Rao, M. Vijayan and D. C. Trivedi, "EMI Shielding: Methods and Materials-A Review", J. Appl. Polym. Sci., 112(4), 2073-2086 (2009). https://doi.org/10.1002/app.29812
  7. S. S. Sidhu, S. Kumar and A. Batish, "Metal Matrix Composites for Thermal Management: A Review", Crit. Rev. Solid State Mater. Sci., 41(2), 132-157 (2016). https://doi.org/10.1080/10408436.2015.1076717
  8. S. Sankaran, K. Deshmukh, M. B. Ahamed and S. K. Pasha, "Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler Reinforced Flexible Polymer Composites: A Review", Compos. Part A Appl. Sci. Manuf., 114, 49-71 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006
  9. S. S. Pradhan, L. Unnikrishnan, S. Mohanty and S. K. Nayak, "Thermally Conducting Polymer Composites with EMI Shielding: A Review", J. Electron. Mater., 49(3), 1749-1764 (2020). https://doi.org/10.1007/s11664-019-07908-x
  10. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, "Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2", Adv. Mater., 23, 4248-4253 (2011). https://doi.org/10.1002/adma.201102306
  11. A. Bhat, S. Anwer, K. S. Bhat, M. I. H. Mohideen, K. Liao and A. Qurashi, "Prospects Challenges and Stability of 2D MXenes for Clean Energy Conversion and Storage Applications", NPJ2D Mater. Appl., 5(1), 1-21 (2021). https://doi.org/10.1038/s41699-020-00190-0
  12. R. Liu, W. Li, "High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx MXene/Poly(vinyl alcohol) (PVA) Composites", ACS Omega, 3, 2609-2617 (2018). https://doi.org/10.1021/acsomega.7b02001
  13. W. Kong, H. Kum, S. Bae, J. Shim, H. Kim, L. Kong, Y. Meng, K. Wang, C. Kim and J. Kim, "Path Towards Graphene Commercialization from Lab to Market", Nat. Nanotechnol., 14(10), 927-938 (2019). https://doi.org/10.1038/s41565-019-0555-2
  14. G. M. da Costa, C. M. Hussain, "Ethical, Legal, Social and Economics Issues of Graphene", Compr. Anal. Chem., 91, 263 (2020). https://doi.org/10.1016/bs.coac.2020.08.010
  15. R. A. Reynolds, R. A. Greinke, "Influence of Expansion Volume of Intercalated Graphite on Tensile Properties of Flexible Graphite", Carbon NY, 39(3), 479-481 (2001). https://doi.org/10.1016/S0008-6223(00)00291-8
  16. Y. Leng, J. Gu, W. Cao and T. Y. Zhang, "Influences of Density and Flake Size on the Mechanical Properties of Flexible Graphite", Carbon, 7, 875-881 (1998).
  17. E. Zhou, J. Xi, Y. Guo, Y. Liu, Z. Xu, L. Peng, W. Gao, J. Ying, Z. Chen and C. Gao, "Synergistic Effect of Graphene and Carbon Nanotube for High-performance Electromagnetic Interference Shielding Films", Carbon, 133, 316-322 (2018). https://doi.org/10.1016/j.carbon.2018.03.023
  18. H. Jia, Q. Kong, X. Yang, L. Xie, G. Sun, L. Liang, J. Chen, D. Liu, Q. Guo and C. M. Chen, "Dual-functional Graphene/Carbon Nanotubes Thick Film: Bidirectional Thermal Dissipation and Electromagnetic Shielding", Carbon, 171, 329-340 (2021). https://doi.org/10.1016/j.carbon.2020.09.017
  19. Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai, R. Song, Z. Pu, D. He, Z. Wu and S. Mu, "Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness", Small, 14(20), 1704332 (2018). https://doi.org/10.1002/smll.201704332
  20. R. Yan, K. Wang, C. Wang, H. Zhang, Y. Song and Q. Guo, J. Wang, "Synthesis and In-situ Functionalization of Graphene Films through Graphite Charging in Aqueous Fe2(SO4)3", Carbon, 107, 379-387 (2016). https://doi.org/10.1016/j.carbon.2016.06.018
  21. J. Li, L. Huang, Y. Yuan, Y. Li and X. He, "Mechanically Strong, Thermally Conductive and Flexible Graphene Composite Paper for Exceptional Electromagnetic Interference Shielding", Mater. Sci. Eng. B, 263, 114893 (2021). https://doi.org/10.1016/j.mseb.2020.114893
  22. Y. Liu, B. Qu, X. Wu, Y. Tian, K. Wu, B. Yu, R. Du, Q. Fu and F. Chen, "Utilizing Ammonium Persulfate Assisted Expansion to Fabricate Flexible Expanded Graphite Films with Excellent Thermal Conductivity by Introducing Wrinkles", Carbon, 153, 565-574 (2019). https://doi.org/10.1016/j.carbon.2019.07.079
  23. Y. Liu, K. Zhang, Y. Mo, L. Zhu, B. Yu, F. Chen and Q. Fu, "Hydrated Aramid Nanofiber Network Enhanced Flexible Expanded Graphite Films Towards High EMI Shielding And Thermal Properties", Compos. Sci. Technol., 168, 28-37 (2018). https://doi.org/10.1016/j.compscitech.2018.09.005
  24. Y. Liu, J. Zeng, D. Han, K. Wu, B. Yu, S. Chai, F. Chen and Q. Fu, "Graphene Enhanced Flexible Expanded Graphite Film with High Electric, Thermal Conductivities and EMI Shielding at Low Content", Carbon, 133, 435-445 (2018). https://doi.org/10.1016/j.carbon.2018.03.047
  25. A. A. Balandin, "Thermal Properties of Graphene and Nanostructured Carbon Materials", Nat. Mater., 10(8), 569-581 (2011). https://doi.org/10.1038/nmat3064
  26. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene", Nano Lett., 8(3), 902-907 (2008). https://doi.org/10.1021/nl0731872
  27. S. Stankovich, D. A, Dikin, G. H. Dommett, K. M. Kohlhass, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, "Graphene-based Composite Materials", Nature, 442, 282-286 (2006). https://doi.org/10.1038/nature04969
  28. L. A. Jauregui, Y. Yue, A. N. Sidorov, J. Hu, Q. Yu, G. Lopez, R. Jalilian, D. K. Benjamin, D. A. Delk, W. Wu, G. Lopez, R. Jalilian, D. K. Benjamin, D. A. Delk, W. Wu, Z. Liu, X. Wang, Z. Jiang, X. Ruan, J. Bao, S. S. Pei and Y. P. Chen, "Thermal Transport in Graphene Nanostructures: Experiments and Simulations", ECS Trans., 28(5), 73-83 (2010). https://doi.org/10.1149/1.3367938
  29. H. Gao, K. Zhu, G. Hu and C. Xue, "Large-scale Graphene Production by Ultrasound-assisted Exfoliation of Natural Graphite in Supercritical CO2/H2O Medium", Chem. Eng. J., 308, 872-879 (2017). https://doi.org/10.1016/j.cej.2016.09.132
  30. M. D. D. La, S. Bhargava and S. V. Bhosale, "Improved and A Simple Approach For Mass Production of Graphene Nanoplatelets Material", Chemistry Select, 1(5), 949-952 (2016).
  31. S. Dubin, S. Gilje, K. Wang, V. C. Tung, K. Cha, A. S. Hall, J. Farrar, R. Varshneya, Y. Yang and R. B. Kaner, "One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersion in Organic Solvents", ACS Nano, 4(7), 3845-3852 (2010). https://doi.org/10.1021/nn100511a
  32. K. Ai, Y. Liu, L. Lu, X. Cheng and L. Huo, "A Novel Strategy for Making Soluble Reduced Graphene Oxide Sheets Cheaply by Adopting an Endogenous Reducing Agent", J. Mater. Chem., 21(10), 3365-3370 (2011). https://doi.org/10.1039/c0jm02865g
  33. S. Mao, H. Pu and J. Chen, "Graphene Oxide and its Reduction: Modeling and Experimental Progress", RSC Adv., 2(7), 2643-2662 (2012). https://doi.org/10.1039/c2ra00663d
  34. Y. Hong, Z. Wang and X. Jin, "Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation", Sci. Rep., 3(1), 3439 (2013) https://doi.org/10.1038/srep03439
  35. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, "Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes", Nature, 457, 706-710 (2009). https://doi.org/10.1038/nature07719
  36. P. W. Sutter, J. Flege and E. A. Sutter, "Epitaxial Graphene on Ruthenium", Nat. Mater., 7, 406-411 (2008). https://doi.org/10.1038/nmat2166
  37. Technology Org, "Scientists Found a Way to Make Graphene 200 Times Cheaper and Greener" (2019).
  38. Investing News Network, "What Factors Impact Graphene Cost?" (2021).
  39. The Graphene Council, "Rice Lab Turns Trash into Valuable Graphene in a Flash" (2020).
  40. D. Lopez-Diaz, M. Lopez Holgado, J. L. Garcia-Fierro and M. M. Velazquez, "Evolution of the Raman Spectrum with the Chemical Composition of Graphene Oxide", J. Phys. Chem. C, 121, 20489-20497 (2017). https://doi.org/10.1021/acs.jpcc.7b06236
  41. M. Sang, J. Shin, K. Kim and K. J. Yu, "Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications", Nanomaterials, 9(3), 374 (2019). https://doi.org/10.3390/nano9030374
  42. B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning and G. de With, "Electrical Conductivity of Compacts of Graphene, Multi-wall Carbon Nanotubes, Carbon Black, and Graphite Powder", Powder Technol., 221, 351-358 (2012). https://doi.org/10.1016/j.powtec.2012.01.024
  43. N. Deprez, D. S. McLachlan, "The Analysis of the Electrical Conductivity of Graphite Conductivity of Graphite Powders During Compaction", J. Phys. D: Appl. Phys., 21, 101-107 (1988). https://doi.org/10.1088/0022-3727/21/1/015
  44. Roskill, "Natural & Synthetic Graphite: Outlook to 2030" (2020).
  45. Fastmarkets IM, "Graphite Prices Steady Despite Underlying Supply Concerns" (2021).
  46. D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets", Nat. Nanotechnol., 3(2), 101-105 (2008). https://doi.org/10.1038/nnano.2007.451
  47. S. Pei, J. Zhao, J. Du, W. Ren and H. M. Cheng, "Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids", Carbon, 48(15), 4466-4474 (2010). https://doi.org/10.1016/j.carbon.2010.08.006