Browse > Article
http://dx.doi.org/10.6117/kmeps.2021.28.4.001

Research Trends of Carbon Composite Film with Electromagnetic Interference Shielding and High Heat Dissipation  

Park, Seong-Hyun (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology)
Kim, Myounghun (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology)
Kim, Kwang-Seok (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.28, no.4, 2021 , pp. 1-10 More about this Journal
Abstract
Recently, electronic components are becoming smaller and highly integrated. As a result, electromagnetic interference (EMI) and heat generation problems must be solved simultaneously with a small area and thickness. Graphene composites and graphite composites are lightweight materials that can simultaneously solve EMI shielding and heat dissipation problems with excellent electrical and thermal conductivity. With the recent development of synthetic technology and composite manufacturing technology, the research to application of their composites is increasing. In this paper, we reviewed the latest researches on composite films of graphene and graphite for EMI shielding and heat dissipation.
Keywords
EMI shielding; Heat dissipation; Graphene composite film; Graphite composite film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Sudo, H. Sasaki, N. Masuda and J. L. Drewniak, "Electromagnetic Interference (EMI) of System-on-Package (SOP)", IEEE Trans. Adv. Packag., 27(2), 304-314 (2004).   DOI
2 C. Zweben, "Advanced Composites And Other Advanced Materials For Electronic Packaging Thermal Management", Proc. International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No. 01TH8562), IEEE, 360-365 (2001).
3 A. L. Moore, L. Shi, "Emerging challenges and materials for thermal management of electronics", Mater. Today, 17(4), 163-174 (2014).   DOI
4 A. Iqbal, P. Sambyal and C. M. Koo, "2D MXenes for Electromagnetic Shielding: A Review", Adv. Funct. Mater., 30, 2000883 (2020).   DOI
5 F. M. Oliveira, R. Gusmao, "Recent Advances in the Electromagnetic Interference Shielding of 2D Materials beyond Graphene", ACS Appl. Electron. Mater., 2(10), 3048-3071 (2020).   DOI
6 S. Geetha, K. K. Satheesh Kumar, C. R. Rao, M. Vijayan and D. C. Trivedi, "EMI Shielding: Methods and Materials-A Review", J. Appl. Polym. Sci., 112(4), 2073-2086 (2009).   DOI
7 S. S. Sidhu, S. Kumar and A. Batish, "Metal Matrix Composites for Thermal Management: A Review", Crit. Rev. Solid State Mater. Sci., 41(2), 132-157 (2016).   DOI
8 S. S. Pradhan, L. Unnikrishnan, S. Mohanty and S. K. Nayak, "Thermally Conducting Polymer Composites with EMI Shielding: A Review", J. Electron. Mater., 49(3), 1749-1764 (2020).   DOI
9 M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, "Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2", Adv. Mater., 23, 4248-4253 (2011).   DOI
10 A. Bhat, S. Anwer, K. S. Bhat, M. I. H. Mohideen, K. Liao and A. Qurashi, "Prospects Challenges and Stability of 2D MXenes for Clean Energy Conversion and Storage Applications", NPJ2D Mater. Appl., 5(1), 1-21 (2021).   DOI
11 R. A. Reynolds, R. A. Greinke, "Influence of Expansion Volume of Intercalated Graphite on Tensile Properties of Flexible Graphite", Carbon NY, 39(3), 479-481 (2001).   DOI
12 R. Liu, W. Li, "High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx MXene/Poly(vinyl alcohol) (PVA) Composites", ACS Omega, 3, 2609-2617 (2018).   DOI
13 W. Kong, H. Kum, S. Bae, J. Shim, H. Kim, L. Kong, Y. Meng, K. Wang, C. Kim and J. Kim, "Path Towards Graphene Commercialization from Lab to Market", Nat. Nanotechnol., 14(10), 927-938 (2019).   DOI
14 G. M. da Costa, C. M. Hussain, "Ethical, Legal, Social and Economics Issues of Graphene", Compr. Anal. Chem., 91, 263 (2020).   DOI
15 Y. Leng, J. Gu, W. Cao and T. Y. Zhang, "Influences of Density and Flake Size on the Mechanical Properties of Flexible Graphite", Carbon, 7, 875-881 (1998).
16 E. Zhou, J. Xi, Y. Guo, Y. Liu, Z. Xu, L. Peng, W. Gao, J. Ying, Z. Chen and C. Gao, "Synergistic Effect of Graphene and Carbon Nanotube for High-performance Electromagnetic Interference Shielding Films", Carbon, 133, 316-322 (2018).   DOI
17 H. Jia, Q. Kong, X. Yang, L. Xie, G. Sun, L. Liang, J. Chen, D. Liu, Q. Guo and C. M. Chen, "Dual-functional Graphene/Carbon Nanotubes Thick Film: Bidirectional Thermal Dissipation and Electromagnetic Shielding", Carbon, 171, 329-340 (2021).   DOI
18 D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets", Nat. Nanotechnol., 3(2), 101-105 (2008).   DOI
19 Y. Hong, Z. Wang and X. Jin, "Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation", Sci. Rep., 3(1), 3439 (2013)   DOI
20 S. Sankaran, K. Deshmukh, M. B. Ahamed and S. K. Pasha, "Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler Reinforced Flexible Polymer Composites: A Review", Compos. Part A Appl. Sci. Manuf., 114, 49-71 (2018).   DOI
21 Y. Liu, B. Qu, X. Wu, Y. Tian, K. Wu, B. Yu, R. Du, Q. Fu and F. Chen, "Utilizing Ammonium Persulfate Assisted Expansion to Fabricate Flexible Expanded Graphite Films with Excellent Thermal Conductivity by Introducing Wrinkles", Carbon, 153, 565-574 (2019).   DOI
22 Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai, R. Song, Z. Pu, D. He, Z. Wu and S. Mu, "Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness", Small, 14(20), 1704332 (2018).   DOI
23 R. Yan, K. Wang, C. Wang, H. Zhang, Y. Song and Q. Guo, J. Wang, "Synthesis and In-situ Functionalization of Graphene Films through Graphite Charging in Aqueous Fe2(SO4)3", Carbon, 107, 379-387 (2016).   DOI
24 J. Li, L. Huang, Y. Yuan, Y. Li and X. He, "Mechanically Strong, Thermally Conductive and Flexible Graphene Composite Paper for Exceptional Electromagnetic Interference Shielding", Mater. Sci. Eng. B, 263, 114893 (2021).   DOI
25 Y. Liu, J. Zeng, D. Han, K. Wu, B. Yu, S. Chai, F. Chen and Q. Fu, "Graphene Enhanced Flexible Expanded Graphite Film with High Electric, Thermal Conductivities and EMI Shielding at Low Content", Carbon, 133, 435-445 (2018).   DOI
26 A. A. Balandin, "Thermal Properties of Graphene and Nanostructured Carbon Materials", Nat. Mater., 10(8), 569-581 (2011).   DOI
27 M. D. D. La, S. Bhargava and S. V. Bhosale, "Improved and A Simple Approach For Mass Production of Graphene Nanoplatelets Material", Chemistry Select, 1(5), 949-952 (2016).
28 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene", Nano Lett., 8(3), 902-907 (2008).   DOI
29 S. Stankovich, D. A, Dikin, G. H. Dommett, K. M. Kohlhass, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, "Graphene-based Composite Materials", Nature, 442, 282-286 (2006).   DOI
30 L. A. Jauregui, Y. Yue, A. N. Sidorov, J. Hu, Q. Yu, G. Lopez, R. Jalilian, D. K. Benjamin, D. A. Delk, W. Wu, G. Lopez, R. Jalilian, D. K. Benjamin, D. A. Delk, W. Wu, Z. Liu, X. Wang, Z. Jiang, X. Ruan, J. Bao, S. S. Pei and Y. P. Chen, "Thermal Transport in Graphene Nanostructures: Experiments and Simulations", ECS Trans., 28(5), 73-83 (2010).   DOI
31 S. Dubin, S. Gilje, K. Wang, V. C. Tung, K. Cha, A. S. Hall, J. Farrar, R. Varshneya, Y. Yang and R. B. Kaner, "One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersion in Organic Solvents", ACS Nano, 4(7), 3845-3852 (2010).   DOI
32 K. Ai, Y. Liu, L. Lu, X. Cheng and L. Huo, "A Novel Strategy for Making Soluble Reduced Graphene Oxide Sheets Cheaply by Adopting an Endogenous Reducing Agent", J. Mater. Chem., 21(10), 3365-3370 (2011).   DOI
33 The Graphene Council, "Rice Lab Turns Trash into Valuable Graphene in a Flash" (2020).
34 S. Mao, H. Pu and J. Chen, "Graphene Oxide and its Reduction: Modeling and Experimental Progress", RSC Adv., 2(7), 2643-2662 (2012).   DOI
35 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, "Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes", Nature, 457, 706-710 (2009).   DOI
36 H. Gao, K. Zhu, G. Hu and C. Xue, "Large-scale Graphene Production by Ultrasound-assisted Exfoliation of Natural Graphite in Supercritical CO2/H2O Medium", Chem. Eng. J., 308, 872-879 (2017).   DOI
37 Y. Liu, K. Zhang, Y. Mo, L. Zhu, B. Yu, F. Chen and Q. Fu, "Hydrated Aramid Nanofiber Network Enhanced Flexible Expanded Graphite Films Towards High EMI Shielding And Thermal Properties", Compos. Sci. Technol., 168, 28-37 (2018).   DOI
38 P. W. Sutter, J. Flege and E. A. Sutter, "Epitaxial Graphene on Ruthenium", Nat. Mater., 7, 406-411 (2008).   DOI
39 Technology Org, "Scientists Found a Way to Make Graphene 200 Times Cheaper and Greener" (2019).
40 Investing News Network, "What Factors Impact Graphene Cost?" (2021).
41 D. Lopez-Diaz, M. Lopez Holgado, J. L. Garcia-Fierro and M. M. Velazquez, "Evolution of the Raman Spectrum with the Chemical Composition of Graphene Oxide", J. Phys. Chem. C, 121, 20489-20497 (2017).   DOI
42 Roskill, "Natural & Synthetic Graphite: Outlook to 2030" (2020).
43 M. Sang, J. Shin, K. Kim and K. J. Yu, "Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications", Nanomaterials, 9(3), 374 (2019).   DOI
44 B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning and G. de With, "Electrical Conductivity of Compacts of Graphene, Multi-wall Carbon Nanotubes, Carbon Black, and Graphite Powder", Powder Technol., 221, 351-358 (2012).   DOI
45 N. Deprez, D. S. McLachlan, "The Analysis of the Electrical Conductivity of Graphite Conductivity of Graphite Powders During Compaction", J. Phys. D: Appl. Phys., 21, 101-107 (1988).   DOI
46 Fastmarkets IM, "Graphite Prices Steady Despite Underlying Supply Concerns" (2021).
47 S. Pei, J. Zhao, J. Du, W. Ren and H. M. Cheng, "Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids", Carbon, 48(15), 4466-4474 (2010).   DOI