• Title/Summary/Keyword: Heat Sink effect

Search Result 90, Processing Time 0.033 seconds

Thermal Transport from an Aluminum Foam Heat Sink in a Confined Impinging Air Jet (국한 충돌공기제트에 의한 발포 알루미늄 방열기의 열전달 특성)

  • Hwang, Jun;Kim, Seo-Young;Kang, Byung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.496-503
    • /
    • 2003
  • An experimental study has been performed on thermal transport from an aluminum foam heat sink under a confined impinging air jet. Three kinds of aluminum foam heat sinks with 10, 20 and 40 PPI and a conventional pin-fin heat sink are tested in the present study. The jet Reynolds number is varied in the range of Re=667~5672 The effect of the confinement disk diameter and the distance between the confinement disk and the heater surface on the averaged Nusselt number is investigated in detail. The results are also compared with those of the unconfined impinging air jet. The critical distance, at which thermal performance shows a minimum compared to the unconfined jet impinging, will be described in terms of the Reynolds number and the pore density of the aluminum foam.

A Study on Analysis of Complex Heat Sink System for High Efficiency LED Thermal Effect (고효율 LED 방열효과 증대를 위한 융합형 Heat Sink 장치 방열 해석)

  • Kang, Chang-Soo;Kang, Ki-Sung
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, did numerical simulation to confirm LED module for lighting and protection against heat special quality of heat sink device. Analysis was gone dividing on case that emitting light side turns normalcy department considering that eat of device according to usage and case that turn down looking being street lamp of 200 W or security appointment lighting device analysis case, and also, volume of thermal element divides on big case and small case and analyzed. Confirmed that can do so that may discharge LED's thermal value to outside enough in analysis wave and current heat sink shape, and investigated that difference of protection against heat performance according to position of device and size of thermal element appears.

Integral effect test for steam line break with coupling reactor coolant system and containment using ATLAS-CUBE facility

  • Bae, Byoung-Uhn;Lee, Jae Bong;Park, Yu-Sun;Kim, Jongrok;Kang, Kyoung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2477-2487
    • /
    • 2021
  • To improve safety analysis technology for a nuclear reactor containment considering an interaction between a reactor coolant system (RCS) and containment, this study aims at an experimental investigation on the integrated simulation of the RCS and containment, with an integral effect test facility, ATLAS-CUBE. For a realistic simulation of a pressure and temperature (P/T) transient, the containment simulation vessel was designed to preserve a volumetric scale equivalently to the RCS volume scale of ATLAS. Three test cases for a steam line break (SLB) transient were conducted with variation of the initial condition of the passive heat sink or the steam flow direction. The test results indicated a stratified behavior of the steam-gas mixture in the containment following a high-temperature steam injection in prior to the spray injection. The test case with a reduced heat transfer on the passive heat sink showed a faster increase of the P/T inside the containment. The effect of the steam flow direction was also investigated with respect to a multi-dimensional distribution of the local heat transfer on the passive heat sink. The integral effect test data obtained in this study will contribute to validating the evaluation methodology for mass and energy (M/E) and P/T transient of the containment.

Thermal Model for Power Converters Based on Thermal Impedance

  • Xu, Yang;Chen, Hao;Lv, Sen;Huang, Feifei;Hu, Zhentao
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1080-1089
    • /
    • 2013
  • In this paper, the superposition principle of a heat sink temperature rise is verified based on the mathematical model of a plate-fin heat sink with two mounted heat sources. According to this, the distributed coupling thermal impedance matrix for a heat sink with multiple devices is present, and the equations for calculating the device transient junction temperatures are given. Then methods to extract the heat sink thermal impedance matrix and to measure the Epoxy Molding Compound (EMC) surface temperature of the power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) instead of the junction temperature or device case temperature are proposed. The new thermal impedance model for the power converters in Switched Reluctance Motor (SRM) drivers is implemented in MATLAB/Simulink. The obtained simulation results are validated with experimental results. Compared with the Finite Element Method (FEM) thermal model and the traditional thermal impedance model, the proposed thermal model can provide a high simulation speed with a high accuracy. Finally, the temperature rise distributions of a power converter with two control strategies, the maximum junction temperature rise, the transient temperature rise characteristics, and the thermal coupling effect are discussed.

Effect of the variation of base thickness on the heat release performance of the heat sink (히트싱크 베이스의 두께 변화가 방열성능에 미치는 영향)

  • Kim, Jung Hyun;Lee, Gyo Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4749-4755
    • /
    • 2014
  • In this study, to maximize the heat release from the heat generating environment, such as a high-capacity inverter, the heat release performance of the extruded-type heat sinks with the variation of the base thickness were investigated using the experimental and numerical methods. The base thickness was varied from 5 to 14 mm. The heat release was characterized by the amount of heat released through the heat sink, the surface temperature of heat sink base between the heat sources, and temperature of heat sources. The surface temperatures between heat sources and the amounts of heat release were improved more as the base thickness was decreased. In contrast, the temperatures of the heat sources decreased with increasing base thickness. Based on the case study of these heat sinks, it is believed that a heat sink with a 9.5mm-thick base was optimized for the heat release.

Heat Transfer from Rectangular Fins with a Circular Base (원형 베이스와 사각 휜 주위의 열전달 해석)

  • Yu, Seung-Hwan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.467-472
    • /
    • 2011
  • The heat transfer over a radial heat sink, adapted for LED (light emitting diode) downlights, was experimentally and analytically investigated. We added radiation heat transfer into a previous calculation that neglected this factor. The numerical results agreed well with experimental results. Parametric studies were performed to compare the effects of the geometric parameters (fin length, fin height, ideal number of fins) and the operating parameter (heat flux) on the average heat-sink temperature from the heat-sink array. We found the fin length that maximizes the heattransfer performance. As the emissivity increased, the effect of geometric parameters on the radiation heat transfer decreased.

Computational Investigation of the Thermal Performances of Polymer Heat Sinks Passively-Cooled by Seawater for Thermoelectric Waste Heat Recovery (열전폐열회수를 위해 수동적으로 해수냉각되는 폴리머 히트싱크 열성능의 수치적 연구)

  • Kim, Kyoung Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.432-436
    • /
    • 2015
  • This study computationally explored the thermal performance of passively-cooled polymer heat sinks utilizing seawater. Polymer heat sinks are proposed as cooling modules of the cold sides of thermoelectric generators for waste heat recovery. 3-D Computational Fluid Dynamics (CFD) modelling was conducted for a detailed numerical study. Polyphenylene sulfide (PPS) and pyrolytic graphite (PG) were selected for the base materials of polymer heat sinks. The computational study evaluated the performance of the PPS and PG heat sinks at various fin numbers and fin thicknesses. Their performances were compared with those of aluminum (Al) and titanium (Ti) heat sinks. The study results showed that the thermal performance of the PG heat sink was 3~4 times better than that of the Ti heat sink. This might be due mainly to the better heat spreading of the PG heat sink than the Ti heat sink. The effect of the number of fins on the performance of the PG heat sink was dissimilar to the cases of the PPS and Ti heat sinks. This result can be explained by the interrelationships among heat spreading, surface area enhancement, and fluidic resistance incorporating with an increase in the number of fins.

Thermal Optimization of a Straight Fin Heat Sink with Bypass Flow (바이패스가 있는 히트 싱크의 열성능 최적화)

  • Kim, Jin-Wook;Kim, Sang-Hoon;Kim, Joong-Nyon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.179-184
    • /
    • 2010
  • This experimental study investigated the effect of tip clearance and bypass flow on the cooling performance of a straight fin heat sink. Both the horizontal and vertical directions of the bypass flow were studied by using a mass flow controller and test sections. The thermal resistance of a heat sink was obtained to elucidate the response of the cooling performance to tip clearance and bypass flow. The thermal resistance of a straight fin heat sink gradually increases with increasing tip clearance. A flow guide unit was employed to reduce the bypass flow. An optimal distance from the leading edge of the heat sink to the flow guide unit was found for the fixed volume flow rate. The contribution of the flow guide unit to the thermal performance of a heat sink increases with increasing volume flow rate.

Numerical analysis of heat dissipation performance of heat sink for IGBT module depending on serpentine channel shape (수치 해석을 통한 절연 게이트 양극성 트랜지스터 모듈의 히트 싱크 유로 형상에 따른 방열 성능 분석)

  • Son, Jonghyun;Park, Sungkeun;Kim, Young-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.415-421
    • /
    • 2021
  • This study analyzed the effect on the cooling performance of the channel shape of a heat sink for an insulated gate bipolar transistor (IGBT). A serpentine channel was used for this analysis, and the parameter for the analysis was the number of curves. The analysis was conducted using computational fluid dynamics with the commercial software ANSYS fluent. One curve in the channel improved the heat dissipation performance of the heat sink by up to 8% compared to a straight-channel heat sink. However, two curves in the channel could not improve the heat discharge performance further. Instead, the two curves caused a higher pressure drop, which induces parasitic loss for the pumping of coolant. The pressure drop of the two-curve channel case was 2.48-2.55 times larger than that of a one-curve channel. This higher pressure drop decreased the heat discharge efficiency of the heat sink with two curves. The discharge heat per unit pressure drop was calculated, and the result of the straight heat sink was highest among the analyzed cases. This means that the heat discharge efficiency of the straight heat sink is the highest.

Study on the Natural Convection Heat-Transfer Enhancement in Radial Heat Sink Using the Perforation and Flow Guide (천공과 유동 가이드를 활용한 방사형 히트싱크의 자연대류 열전달 향상에 관한 연구)

  • Jeon, Sora;Li, Bin;Byon, Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.339-345
    • /
    • 2016
  • In this study, we numerically investigate the thermal performance of an enhanced radial heat sink with a perforation and chimney structure. We estimate the thermal performance of the enhanced radial heat sink, and compared it with that of a conventional radial heat sink. The results show that the radial heat sink with perforation has a higher thermal performance when either of the diameter and the number of perforations is high. With regards to the radial heat sink with a chimney structure, we investigate primarily the effect of the fin number, and the spacing between the chimney and the base plate on the thermal performance. The results show that there are optimal values for the fin number and the spacing between chimney and base plate. In addition, the enhanced radial heat sinks have maximum thermal performance when facing upward ($0^{\circ}$), while it has worst performance when facing sideward ($90^{\circ}$). The perforation and chimney are shown to cause thermal performance enhancements of 17% and 20%, respectively, compared with a conventional radial heat sink. The proposed method is useful for starting business, and is useful in terms of venture and entrepreneurship.