DOI QR코드

DOI QR Code

Thermal Transport from an Aluminum Foam Heat Sink in a Confined Impinging Air Jet

국한 충돌공기제트에 의한 발포 알루미늄 방열기의 열전달 특성

  • 황준 (국민대학교 대학원 기계공학과) ;
  • 김서영 (KIST 열유동제어센터) ;
  • 강병하 (국민대학교 기계.자동차공학부)
  • Published : 2003.04.01

Abstract

An experimental study has been performed on thermal transport from an aluminum foam heat sink under a confined impinging air jet. Three kinds of aluminum foam heat sinks with 10, 20 and 40 PPI and a conventional pin-fin heat sink are tested in the present study. The jet Reynolds number is varied in the range of Re=667~5672 The effect of the confinement disk diameter and the distance between the confinement disk and the heater surface on the averaged Nusselt number is investigated in detail. The results are also compared with those of the unconfined impinging air jet. The critical distance, at which thermal performance shows a minimum compared to the unconfined jet impinging, will be described in terms of the Reynolds number and the pore density of the aluminum foam.

Keywords

References

  1. Kang, B. H., Jaluria, Y. and Tewari, S. S., 1990, 'Mixed Convection Transport from an lsolate Heat Source Module on a Horizontal Plate,' ASME Journal of Heat Transfer, Vol. 112, pp. 653-661 https://doi.org/10.1115/1.2910437
  2. Kim, S. Y., Sung, H. J., Hyun, J. M., 1992,' Mixed Convectiion from Multi-Layered Boards with Cross-Stream Wise Periodic Boudary Conditions,' Int. J. Heat Mass Transfer, Vol. 35, pp. 2941-2952 https://doi.org/10.1016/0017-9310(92)90314-I
  3. Hansen, L. G and Webb, B. W. 1993, ' Air jet impingement heat transfer from modified surface,' Int. J. Heat Mass Transfer, Vol. 36, pp. 989-997 https://doi.org/10.1016/S0017-9310(05)80283-2
  4. Sparrow, E. M., Goldstein, R. J., and Rouf, M. A., 1975, ' Effect of Nozzle Surface Separation Distance on Impingement Heat Transfer for a Jet in a Crossflow,' ASME Journal of Heat Transfer, Vol. 97, pp. 528-533 https://doi.org/10.1115/1.3450423
  5. Paek, J. W., Kang, B. H., Kim, S. Y. and Hyun, J. M., 2000, ' Effective Thermal Conductivity and Permeability of Aluminum Foam Material,' Int. J. Thermophysics, Vol. 21, pp. 453-464 https://doi.org/10.1023/A:1006643815323
  6. Paek, J. W., Kim, S. Y. and Kang, B. H., 2000, ' Heat Transfer from an Aluminum Foam Heat Sink for Electronics Cooling,' Proc. of the 4th JSME-KSME Thermal engineering Conf., Kobe, Japan, pp. 635(2)-640(2)
  7. Lee, M. H., Paek, J. W., Kim, S. Y. and Lee, K. S., 2001, ' Heat Transfer from an Aluminum Foam heat Sink for Electronics Cooling,' Proc. of the KSME Thermal Engineering Conf. - Spring 2001, pp. 101-106
  8. Webb, R. L., 1994,' Principles of Enhanced Heat Transfer,' John Wiley & Sons. Inc.
  9. Park, J. W., Kim, S. Y. and Kang, B. H., 2001, ' Effects of Nozzle Size and Height of Aluminum Foam Heat Sink on Jet Impingement Heat Transfer,' J. KSME, Vol. 25, pp. 1263-1271
  10. D. W. Colucci and R. Viskanta, 1996, 'Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet,' Exp. Thermal and Fluid Science, Vol. 13, pp.71-80 https://doi.org/10.1016/0894-1777(96)00015-5
  11. Paek, J. W., Kim, S. Y. and Kang, B. H., 2001, ' Heat Transfer from a Porous Heat Sink by Air Jet Impingment,' Korea Joural of Refrigeration and Air Conditioning, Vol. 13, pp. 73-79
  12. ERG Duocel Aluminum Foam Catolog, 1995, Energy Reaserch and Generation Inc., Oakland, CA
  13. Incropera, F. P., 1999, 'Liquid Cooling of Electronic Devices by Single-Phase Convection,' John Wiley and Sons, New York
  14. Huber, A. M., and Viskanta, R., 1994, 'Heat Transfer to a Confined Impinging Array of Air Jets with Spent Air Exits,' ASME Journal of Heat Transfer, 116, pp. 570-576 https://doi.org/10.1115/1.2910908