DOI QR코드

DOI QR Code

Computational Investigation of the Thermal Performances of Polymer Heat Sinks Passively-Cooled by Seawater for Thermoelectric Waste Heat Recovery

열전폐열회수를 위해 수동적으로 해수냉각되는 폴리머 히트싱크 열성능의 수치적 연구

  • Kim, Kyoung Joon (Department of Mechanical Design Engineering, Pukyong National University)
  • Received : 2015.02.24
  • Accepted : 2015.04.10
  • Published : 2015.05.31

Abstract

This study computationally explored the thermal performance of passively-cooled polymer heat sinks utilizing seawater. Polymer heat sinks are proposed as cooling modules of the cold sides of thermoelectric generators for waste heat recovery. 3-D Computational Fluid Dynamics (CFD) modelling was conducted for a detailed numerical study. Polyphenylene sulfide (PPS) and pyrolytic graphite (PG) were selected for the base materials of polymer heat sinks. The computational study evaluated the performance of the PPS and PG heat sinks at various fin numbers and fin thicknesses. Their performances were compared with those of aluminum (Al) and titanium (Ti) heat sinks. The study results showed that the thermal performance of the PG heat sink was 3~4 times better than that of the Ti heat sink. This might be due mainly to the better heat spreading of the PG heat sink than the Ti heat sink. The effect of the number of fins on the performance of the PG heat sink was dissimilar to the cases of the PPS and Ti heat sinks. This result can be explained by the interrelationships among heat spreading, surface area enhancement, and fluidic resistance incorporating with an increase in the number of fins.

본 연구에서는 해수를 활용하여 수동적으로 냉각되는 폴리머 히트싱크의 열성능을 전산적으로 탐구한다. 폴리머 히트싱크는 폐열회수를 위한 열전생성기의 저온면의 냉각모듈로 제안되었고, 상세한 수치연구를 위해 3차원 전산유체역학 모델링이 수행되었다. 폴리머 히트싱크의 기본 소재로 polyphenylene sulfide (PPS)와 pyrolytic graphite (PG)가 선택되었고, 전산연구는 다양한 휜 수와 휜 두께에서 PPS와 PG 히트싱크의 성능을 결정하고, 이 결과는 알루미늄 (Al)과 티타늄 (Ti) 히트싱크와 비교된다. 연구결과는 PG 히트싱크가 Ti 히트싱크 보다 3~4배 열성능이 우수함을 보이는데, 이 결과는 Ti 히트싱크보다 더 우수한 PG 히트싱크의 열확산에 기인한 것으로 보인다. 연구결과에 의하면 PG 히트싱크의 열성능에 대한 휜 수 증가의 효과가 PPS와 Ti 히트싱크 경우와는 상반됨을 보이는데, 이는 휜 수 증가에 대한 열확산, 표면적 증대, 유동저항의 상관관계로 설명이 가능하다.

Keywords

References

  1. R. Bahadur and A. Bar-Cohen, "Thermal design and optimization of natural convection polymer pin fin heat sinks," IEEE Transactions on Components and Packaging Technologies, vol. 28, no. 2, pp. 238-246, 2005. https://doi.org/10.1109/TCAPT.2005.848498
  2. R. Bahadur and A. Bar-Cohen, "Analysis and design of a least material orthotropic pin fin heat sinks," Proceedings of the 10th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, pp. 305-313, 2006.
  3. T. Icoz and M. Mehmet, "Light weight high performance thermal management with advanced heat sinks and extended surfaces," IEEE Transactions on Components and Packaging Technologies, vol. 33, no. 1, pp. 161-166, 2010. https://doi.org/10.1109/TCAPT.2009.2026736
  4. J. G. Cevallos, A. E. Bergles, A. Bar-Cohen, P. Rodgers, and S. K. Gupta, "Polymer heat exchangers-history, opportunities, and challenges," Heat Transfer Engineering, vol. 33, no. 13, pp. 1075-1093, 2012. https://doi.org/10.1080/01457632.2012.663654
  5. K. J. Kim, F. Cottone, S. Goyal, and J. Punch, "Energy scavenging for energy efficiency in networks and applications," Bell Labs Technical Journal, vol. 15, no. 2, pp. 7-30, 2010. https://doi.org/10.1002/bltj.20438
  6. D. M. Rowe (ed.), CRC Handbook of Thermoelectrics, Boca Raton, USA: CRC, 1995.
  7. K. J. Kim, "Generation efficiency and thermal performance of a thermoelectric generator with a high power electronic component," Journal of the Korean Society of Marine Engineering, vol. 36, no. 1, pp. 51-56, 2012. https://doi.org/10.5916/jkosme.2012.36.1.51
  8. ANSYS Inc., ANSYS Fluent User's Guide, 2014.
  9. F. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer, 7th Ed, Singapore: John Wiley & Sons Inc., 2013.