• 제목/요약/키워드: Harsh environments

검색결과 229건 처리시간 0.026초

Development of Two-color Radiation Thermometer for Harsh Environments

  • Mohammed, Mohammed Ali Alshaikh;Kim, Ki-Seong
    • 한국분무공학회지
    • /
    • 제21권4호
    • /
    • pp.184-194
    • /
    • 2016
  • Many industrial processes require reliable temperature measurements in harsh environments with high temperature, dust, humidity, and pressure. However, commercially-available conventional temperature measurement devices are not suitable for use in such conditions. This study thus proposes a reliable, durable two-color radiation thermometer (RT) for harsh environments that was developed by selecting the appropriate components, designing a suitable mechanical structure, and compensating environmental factors such as absorption by particles and gases. The two-color RT has a simple, compactly-designed probe with a well-structured data acquisition system combined with efficient LabVIEW-based code. As a result, the RT can measure the temperature in real time, ranging from 300 to $900^{\circ}C$ in extremely harsh environments, such as that above the burden zone of a blast furnace. The error in the temperature measurements taken with the proposed two-color RT compared to that obtained using K-type thermocouple readouts was within 6.1 to $1.4^{\circ}C$ at a temperature range from 200 to $700^{\circ}C$. The effects of absorption by gases including $CO_2$, CO and $H_2O$ and the scattering by fine particles were calculated to find the transmittance of the two wavelength bands of operation through the path between the measured burden surface and the two-color probe. This method is applied to determine the transmittance of the short and long wavelength bands to be 0.31 and 0.51, respectively. Accordingly, the signals that were measured were corrected, and the true burden surface temperature was calculated. The proposed two-color RT and the correction method can be applied to measure temperatures in harsh environments where light-absorbing gases and scattering particles exist and optical components can be contaminated.

극한 환경용 반도체 기술 동향 (Technical Trends of Semiconductors for Harsh Environments)

  • 장우진;문재경;이형석;임종원;백용순
    • 전자통신동향분석
    • /
    • 제33권6호
    • /
    • pp.12-23
    • /
    • 2018
  • In this paper, we review the technical trends of diamond and gallium oxide ($Ga_2O_3$) semiconductor technologies among ultra-wide bandgap semiconductor technologies for harsh environments. Diamond exhibits some of the most extreme physical properties such as a wide bandgap, high breakdown field, high electron mobility, and high thermal conductivity, yet its practical use in harsh environments has been limited owing to its scarcity, expense, and small-sized substrate. In addition, the difficulty of n-type doping through ion implantation into diamond is an obstacle to the normally-off operation of transistors. $Ga_2O_3$ also has material properties such as a wide bandgap, high breakdown field, and high working temperature superior to that of silicon, gallium arsenide, gallium nitride, silicon carbide, and so on. In addition, $Ga_2O_3$ bulk crystal growth has developed dramatically. Although the bulk growth is still relatively immature, a 2-inch substrate can already be purchased, whereas 4- and 6-inch substrates are currently under development. Owing to the rapid development of $Ga_2O_3$ bulk and epitaxy growth, device results have quickly followed. We look briefly into diamond and $Ga_2O_3$ semiconductor devices and epitaxy results that can be applied to harsh environments.

Effects of harsh environmental exposures on the bond capacity between concrete and GFRP reinforcing bars

  • Al-Tamimia, Adil;Abed, Farid H.;Al-Rahmani, Abdulla
    • Advances in concrete construction
    • /
    • 제2권1호
    • /
    • pp.1-11
    • /
    • 2014
  • This paper demonstrates an experimental study to evaluate the effects of environmental exposures on the bond between ribbed Glass Fiber Reinforced Polymer (GFRP) reinforcing bars and concrete. The equation recommended by ACI 440-1R-06, for the bond stress,was evaluated in this study. A total of 16 pullout samples, 12with GFRP bars and 4with steel bars, were exposed to two different harsh environments for different periods of time. The exposed harsh environments included direct sun exposure and cyclic splash zone sea water. The variation in the shear (bond) strengths before and after exposure was considered as a measure of the durability of the bond between GFRP bars and concrete.Experimental results showed there is no significant difference of the bond strength between 60 and 90 days of exposures.It also showed that the empirical equation of the bond stress calculated by ACI 440-IR-06 is very conservative.

고온, 일반수 및 염수 등 가혹 환경에 노출된 접착제의 기계적 및 열분석적 특성 변화 분석 (Analysis of Mechanical and Thermal Analysis Properties of Adhesive Exposed to Harsh Environments such as High Temperature, Tap Water, and Saltwater)

  • 권락범;윤성호
    • Composites Research
    • /
    • 제37권5호
    • /
    • pp.402-408
    • /
    • 2024
  • 본 연구에서는 고온, 일반수, 염수를 포함한 가혹한 환경에 노출된 접착제의 기계적 성능과 열분석적 특성을 평가하였다. 다양한 온도, 습도 및 염도 조건에서 접착제 특성의 변화를 조사하기 위해 풀아웃 시편을 사용하였다. 동적 기계적 분석기(DMA)를 사용하여 유리전이온도를 측정하였으며, 전계 방출 주사 전자 현미경(FE-SEM)과 에너지 분산 X선 분광법(EDS)을 사용하여 미세 구조 및 성분 변화를 평가하였다. 연구결과에 따르면, 접착제가 다양한 환경조건에 노출되면 후경화가 발생되어 유리전이온도가 상승하고 접착제의 열적 안정성과 기계적 성능이 향상됨을 알 수 있었다. 또한, 화학적 분석 결과에서는 접착제가 염수에 노출되면 Na 및 Cl 이온이 침투되어 장기적인 측면에서 접착제의 성능 저하가 발생함도 알 수 있었다. 그럼에도 불구하고 풀 아웃 시험 결과는 접착제가 다양한 환경조건에 노출되더라도 파손 하중의 변화는 크지 않았지만 염수에 노출되면 접착제 표면에 미세 구조 변형이 나타남이 관찰되었다. 이러한 연구결과들은 가혹한 환경조건에서 운용되는 자동차 및 항공우주 구성 요소에 적용되는 접착제는 신중하게 선택되고 운용되어야 함을 시사한다.

SiC 마이크로 히터가 내장된 극한 환경용 NO 센서의 제작과 특성 (Fabrication of NO sensor integrated SiC micro heaters for harsh environments and its characteristics)

  • 김강산;정귀상
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.197-201
    • /
    • 2010
  • This paper describes the fabrication and characteristics of a NO sensor using ZnO thin film integrated 3C-SiC micro heater based on polycrystalline 3C-SiC thin film of operation in harsh environments. The sensitivity, response time, and operating properties in high temperature and voltages of NO sensors based SiC MEMS are measured and analyzed. The sensitivity of device with pure ZnO thin film at the heater operating power of 13.5 mW ($300^{\circ}C$) is 0.875 in NO gas concentration of 0.046 ppm. In the case of Pt doping, the sensitivity of at power consumption of 5.9 mW ($250^{\circ}C$) was 1.92 at same gas flow rate. The ZnO with doped Pt was showed higher sensitivity, lower working temperature and faster adsorption characteristics to NO gas than pure ZnO thin film. The NO gas sensor integrated SiC micro heater is more strength than others in high voltage and temperature environments.

Intelligent Robust Base-Station Research in Harsh Outdoor Wilderness Environments for Wildsense

  • Ahn, Junho;Mysore, Akshay;Zybko, Kati;Krumm, Caroline;Lee, Dohyeon;Kim, Dahyeon;Han, Richard;Mishra, Shivakant;Hobbs, Thompson
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.814-836
    • /
    • 2021
  • Wildlife ecologists and biologists recapture deer to collect tracking data from deer collars or wait for a drop-off of a deer collar construction that is automatically detached and disconnected. The research teams need to manage a base camp with medical trailers, helicopters, and airplanes to capture deer or wait for several months until the deer collar drops off of the deer's neck. We propose an intelligent robust base-station research with a low-cost and time saving method to obtain recording sensor data from their collars to a listener node, and readings are obtained without opening the weatherproof deer collar. We successfully designed the and implemented a robust base station system for automatically collecting data of the collars and listener motes in harsh wilderness environments. Intelligent solutions were also analyzed for improved data collections and pattern predictions with drone-based detection and tracking algorithms.

금속 멤브레인 압력 센서에서 압저항체 패턴 형태에 따른 특성 비교 (Comparison of the Characteristics of Metal Membrane Pressure Sensors Depending on the Shape of the Piezoresistive Patterns)

  • 박준;김창규
    • 센서학회지
    • /
    • 제33권3호
    • /
    • pp.173-178
    • /
    • 2024
  • Development of pressure sensors for harsh environments with high pressure, humidity, and temperature is essential for many applications in the aerospace, marine, and automobile industries. However, existing materials such as polymers, adhesives, and semiconductors are not suitable for these conditions and require materials that are less sensitive to the external environment. This study proposed a pressure sensor that could withstand harsh environments and had high durability and precision. The sensor comprised a piezoresistor pattern and an insulating film directly formed on a stainless-steel membrane. To achieve the highest sensitivity, a pattern design method was proposed that considered the stress distribution in a circular membrane using finite element analysis. The manufacturing process involved depositing and etching a dielectric insulating film and metal piezoresistive material, resulting in a device with high linearity and slight hysteresis in the range of a maximum of 40 atm. The simplicity and effectiveness of this sensor render it a promising candidate for various applications in extreme environments.

항온항습 환경에 노출된 Al2O3 ALD 박막의 특성 평가 (Characteristics Evaluation of Al2O3 ALD Thin Film Exposed to Constant Temperature and Humidity Environment)

  • 김현우;송태민;이형준;전용민;권정현
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.11-14
    • /
    • 2022
  • In this work, we evaluated the Al2O3 film, which was deposited by atomic layer deposition, degraded by exposure to harsh environments. The Al2O3 films deposited by atomic layer deposition have long been used as a gas diffusion barrier that satisfies barrier requirements for device reliability. To investigate the barrier and mechanical performance of the Al2O3 film with increasing temperature and relative humidity, the properties of the degraded Al2O3 film exposed to the harsh environment were evaluated using electrical calcium test and tensile test. As a result, the water vapor transmission rate of Al2O3 films stored in harsh environments has fallen to a level that is difficult to utilize as a barrier film. Through water vapor transmission rate measurements, it can be seen that the water vapor transmission rate changes can be significant, and the environment-induced degradation is fatal to the Al2O3 thin films. In addition, the surface roughness and porosity of the degraded Al2O3 are significantly increased as the environment becomes severer. the degradation of elongation is caused by the stress concentration at valleys of rough surface and pores generated by the harsh environment. Becaused the harsh envronment-induced degradation convert amorphous Al2O3 to crystalline structure, these encapsulation properties of the Al2O3 film was easily degraded.

Ta-N 스트레인 게이지의 제작과 그 특성 (Fabrication of tantalum nitride thin film strain gauges and its characteristics)

  • 이태원;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.376-377
    • /
    • 2006
  • This paper presents the characteristics of Ta-N thin film strain gauges that are suitable for harsh environemts, which were deposited on thermally oxidized Si substrates by DC reactive magnetronsputtering in an argon-nitrogen atmosphere (Ar-$N_2$ (4 ~ 16 %)). These films were annealed for 1 hr in $2{\times}10^{-6}$ Torr in a vacuum furnace with temperatures that ranged from 500 - $1000^{\circ}C$. The optimized deposition and annealing conditions of the Ta-N thin film strain gauges were determined using 8 % $N_2$ gas flow ratio and annealing at $900^{\circ}C$ for 1 hr. Under optimum formation conditions, the Ta-N thin film strain gauges obtained a high electrical resistivity, ${\rho}\;=\;768.93\;{\mu}{\Omega}{\cdot}cm$, a low temperature coefficient of resistance, $TCR\;=\;-84\;ppm/^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=4.12. The fabricated Ta-N thin film strain gauges are expected to be used inmicromachined pressure sensors and load cells that are operable under harsh environments.

  • PDF

혹독한 환경에서의 무근콘크리트 복합열화 저감을 위한 배합설계 및 품질관리 방안 구축 (Building mix design and quality control measures to reduce the combined deterioration of plain concrete in harsh environments)

  • 김대건;박찬규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.85-86
    • /
    • 2016
  • Recently damages caused by the additional costs and degradation in durability combined deterioration due to plain concrete deterioration has occurred. In particular, in the case of the finish that is not exposed to the outside air in the concrete to respond to the harsh environment (freeze-thawing, calcium laying, etc.), to establish a quality control way for the process and the concrete mix design for it.

  • PDF