• Title/Summary/Keyword: Harmonic Balance

Search Result 106, Processing Time 0.026 seconds

Numerical Modeling of Soot Formation in $C_2H_4$/Air Turbulent Non-premixed Flames ($C_2H_4$/Air 비예혼합 난류화염의 매연생성 모델링)

  • Kim, Tae-Hoon;Woo, Min-O;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • The Direct Quadrature Method of Moments (DQMOM) has been presented for the solution of population balance equation in the wide range of the multi-phase flows. This method has the inherently interesting features which can be easily applied to the multi-inner variable equation. In addition, DQMOM is capable of easily coupling the gas phase with the discrete phases while it requires the relatively low computational cost. Soot inception, subsequent aggregation, surface growth and oxidation are described through a population balance model solved with the DQMOM for soot formation. This approach is also able to represent the evolution of the soot particle size distribution. The turbulence-chemistry interaction is represented by the laminar flamelet model together with the presumed PDF approach and the spherical harmonic P-1 approximation is adopted to account for the radiative heat transfer.

PI and Fuzzy Logic Controller Based 3-Phase 4-Wire Shunt Active Filters for the Mitigation of Current Harmonics with the Id-Iq Control Strategy

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.914-921
    • /
    • 2011
  • Commencing with incandescent light bulbs, every load today creates harmonics. Unfortunately, these loads vary with respect to their amount of harmonic content and their response to problems caused by harmonics. The prevalent difficulties with harmonics are voltage and current waveform distortions. In addition, Electronic equipment like computers, battery chargers, electronic ballasts, variable frequency drives, and switching mode power supplies generate perilous amounts of harmonics. Issues related to harmonics are of a greater concern to engineers and building designers because they do more than just distort voltage waveforms, they can overheat the building wiring, cause nuisance tripping, overheat transformer units, and cause random end-user equipment failures. Thus power quality is becoming more and more serious with each passing day. As a result, active power filters (APFs) have gained a lot of attention due to their excellent harmonic compensation. However, the performance of the active filters seems to have contradictions with different control techniques. The main objective of this paper is to analyze shunt active filters with fuzzy and pi controllers. To carry out this analysis, active and reactive current methods ($i_d-i_q$) are considered. Extensive simulations were carried out. The simulations were performed under balance, unbalanced and non sinusoidal conditions. The results validate the dynamic behavior of fuzzy logic controllers over PI controllers.

Novel Control of STATCOM Using Cascade Multilevel Inverter for High Power Application (대전력용 직렬형 멀티레벨 인버터 이용한 STATCOM의 새로운 제어기법)

  • Min, Wan-Ki;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.136-141
    • /
    • 2000
  • This paper proposes the novel control of a static synchronous compensator (STATCOM). This STATCOM system consists of cascade multilevel inverter which employs H-bridge inverter(HBI) The STATCOM system is modeled in the d-q transform matrix. This model is used to design a controller. The selective harmonic elimination method(SHEM) allows to keep the total harmonic distortion (THD) low in the output voltage. The switching method produces the staircase type waveform in cascade multilevel inverter. To balance the DC voltages in HBIs capacitor, the rotated switching scheme is newly proposed in this paper. The proposed control scheme is verified in the simulated results.

  • PDF

A study on the Analysis of Dynamic Characteristic for Nonlinear Rotor-Housing Systems (비선형 로터-하우싱 시스템의 동특성 해석 연구)

  • Kim, G.G.;Lim, J.H.;Chung, I.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.69-78
    • /
    • 1995
  • Nonlinear analysis methods are developed which will enable the reliable prediction of the dynamic behavior of the space shuttle main engine(SSME) turbopumps in the presence of bearing clearances and other local nonlinearities. A computationally efficient convolution method, based on discretized Duhamel and transition matrix integral formulations, is developed for the transient analysis. In the formulation, the coupling forces due to the onlinearities are treated as external forces acting on the coupled subsystems. Iteration is utilized to determine their magnitudes at each time increament. The method is applied to a nonlinear generic model of the high pressure oxygen turthods, the convolution approach proved to be more accurate and highly more efficient. For determining the nonlinear, steady-state periodic responses, an incremental harmonic balance(IHB) method was also developed. The method was successfully used to determine dominantly harmonic and subharmonic(subsynchronous) responses of the HPOTP generic model with bearing clearances. A reduction method similar to the impedance formulation utilized with linear systems is used to reduce the housing-totor models to their coordinates at the bearing clearances.

  • PDF

Finite Element Method using Complex Harmonics for analyzing saturation characteristics (포화 특성 해석을 위한 복소 고조파 유한 요소해석법)

  • Chung, Yong-Seek;Park, Gwan-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.11-14
    • /
    • 1990
  • The Complex Harmonic Balance Finite Element Method CHBFEM ) is dicussed for the time - periodic magnetic field with saturation characteristics. And Jw - method which is used for analyzing liner system with sinusoidal voltage input can be generalized in nonlinear time-periodic magnetio field system. The CHBFEM enables us to calculate the each harmonic magnetic flux ditribution and the distortion of currents resulting from material at an AC voltage source and to save calculating time, the number of calculation and computer memory.

  • PDF

Effects of Imperfect Sinusoidal Input Currents on the Performance of a Boost PFC Pre-Regulator

  • Cheung, Martin K.H.;Chow, Martin H.L.;Lai, Y.M.;Loo, K.H.
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.689-698
    • /
    • 2012
  • This paper investigates the effects of applying different input current waveshapes on the performance of a continuous-conduction-mode (CCM) power-factor-correction (PFC) boost pre-regulator. It is found that the output voltage ripple of the pre-regulator can be reduced if the input current is modified to include controlled amount of higher order harmonics. This finding allows us to balance the performance of output regulation and the harmonic current emission when coming to the design of the pre-regulator. An experimental PFC boost pre-regulator prototype is constructed to verify the analysis and show the benefit of the pre-regulator operating with input current containing higher order harmonics.

On the limit cycles of aeroelastic systems with quadratic nonlinearities

  • Chen, Y.M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.67-76
    • /
    • 2008
  • Limit cycle oscillations of a two-dimensional airfoil with quadratic and cubic pitching nonlinearities are investigated. The equivalent stiffness of the pitching stiffness is obtained by combining the linearization and harmonic balance method. With the equivalent stiffness, the equivalent linearization method for nonlinear flutter analysis is generalized to address aeroelastic system with quadratic nonlinearity. Numerical example shows that good approximation of the limit cycle can be obtained by the generalized method. Furthermore, the proposed method is capable of revealing the unsymmetry of the limit cycle; however the ordinary equivalent linearization method fails to do so.

Computations of bifurcating modes due to the stability change of normal modes (정규모드의 안정성 변화에 따른 분기모우드의 계산법)

  • Pak, Chol-Hui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.435-440
    • /
    • 2000
  • It is shown, in nonlinear two-degree-of freedom system, that the bifurcating modes are created by the stability changes of normal modes. There are four types of stability criterion, each of which gives rise to a distinct functional form of bifurcating modes; the bifurcating mode is born in the form of eigenfunction through which the stability is changed. Then a procedure is formulated to compute the bifurcating mode by the method of harmonic balance. Application of bifurcating mode to forced vibrations is introduced.

  • PDF

Nonlinear Dynamic Analysis of Fiber Movement

  • Shen Danfeng;Ye Guoming
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.191-194
    • /
    • 2006
  • This paper adopts nonlinear vibration method to analyze the fluctuation process of fiber movement. Based on Hamilton Principle, this paper establishes differential equation of fiber axial direction movement. Using variable-separating method, this paper separates time variable from space variable. By using the disperse movement equation of Galerkin method, this paper also discusses stable region of transition curve and points out those influencing factor and variation trend of fiber vibration.

A Study on the Static Var Compensator Application for the train garage in Korean National Railroad: Analysis of Harmonic Generation of SVC (전동차 사무소의 SVC 적용에 따른 고조파 발생에 관한 연구)

  • Lee, Seung-Hyuk;Lee, Jun-Kyong;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.101-108
    • /
    • 2004
  • AC electric railroad system receives its power from 3-phase transmission system, Since, trainloads are changing continuously, the voltages for the single-phase load fluctuate in the train garage, and moreover, the fluctuating voltages generate high-order harmonics. This means that there is the difficulty in maintaining power quality in the power system. Therefore, a Static Var Compensator(SVC), which in general compensates the reactive power, is used in order to balance the trainload. In this paper, PSCAD/EMTDC is used for the analysis of harmonic generation in the train garage using SVC. The Total Harmonic Distortion(THD) of voltages is calculated using PSCAD/EMTDC dynamic simulation. As a result, the train garage using SVC improves power quality.