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Computations of bifurcating modes due to

the stability change of normal modes

Chol-Hui Pak

ABSTRACT

It is shown, in nonlinear two-degree-of freedom system, that the bifurcating modes are created

by the stability changes of normal modes. There are four types oi stability criterion, each of which

gives rise to a distinct functional form of bifurcating modes; the bifurcating mode is born in the
form of eigenfunction through which the stability is changed. Then a procedure is formulated to
compute the bifurcating mode by the method of harmonic balance. Application of bifurcating mode to

forced vibrations is introduced.

1. Introduction
Consider a conservative system in which the
kinetic energy K and potential energy V are
written

=L S mDid, V=W, Ktv=h Q)

where x=(x,,x;) and x=(x;,x,) are the

generalized coordinates and velocity,

respectively. Assume

i) my—x)=myx) and W~—x)= Wx) , and
they are smooth. ‘

(ii) The configuration space I'(h)= {x&R?|
h— WV(x)20 } is a simple closed domain in
R?, containing the origin.. :

(i) vV*0 on aI'(h)= {x€R*|h— Vx)=0}
which is assumed to be a simple closed
curve.

Then the existence of normal mode is shown

by Pak and Rosenberg(1968).

The stability of normal mode may be
determined by the variational equations(two
second order coupled differential equations)
which are obtained by perturbing the equations
of motion and linearing the resulting equations.
Then four characteristic  multipliers are
computed. Due to the symplectic property of
Hamiltonian, the product of each pair is unity.
In particular, one pair is unit if the system is
A3=4,=1. The
multipliers 4; and A, with A,A;,=1 determine
the stability, implying that a normal mode is
generically shown to be a center or a saddle
in Poincare map. Then it is shown that the
stable and unstable manifolds of saddle either
form a

conservative; remaining

homoclinic  orbit or intersect
transversally, in either case a center is born,
called a bifurcating mode.

The functional form of bifurcating mode is
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determined by Pak(1999); a bifurcating mode is
born in the form of eigenfunction
corresponding to  the- transition curve of
stability chart. To prove it, the calculus of
variations is utilized, in particular the geometry
of envelope which is created from & I" (k).
Then the method of harmonic balance is
formulated.

Examples are given to compute the
bifurcating modes in elastically coupled and
inertially coupled nonlinear systems. Then a
procedure is introduced to study forced
vibrations whose response may be periodic,
quasi—periodic or chaotic.

2. The birth of bifurcating modes

Let x"(#) be a normal mode. To study the
stability of x°(d, it is perturbed by x=x"+7 .
By substituting in the equations of motion

L (Fimi05) - F (Smpiad+ L =0, =12 @

and by linearing, one obtains
A() 7+ B+ C(H=0 (3)

where A, B and C are periodic of period T.
Then Floquet theory is applicable to compute
the characteristic multipliers

Kt+ T)=AP, for all 0. 4)

There are four multipliers. But the product of
each pair is unity, and one pair is unity if the
system is conservative; A;d;=1 and A3=A,=1
as shown in Fig. 1. Therefore, a normal mode
is generically a center or a saddle, shown in
Fig. 2, and the non-generic case corresponds
to the stability change or coexistence.

By utilizing the uniqueness theorem applied
to the equations of motion and by noting that
a Hamiltonian systemn does not possess a limit
set, we have
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Fig. 1 Characteristic multiplier

b %

X
X
(s) stable (b) unstable

Fig. 2 Poincare map of normal mode

Lemm 1. The stable and unstable manifolds of
saddle(unstable normal mode) either from a
homoclinic orbit or intersect transversally,

shown in Fig. 3. In either case, a new center
is born, called a bifurcating mode.

(a) homoclinic orbit (b) transversal intersection
Fig. 3. The birth of bifurcating mode

Due to the symmetry assumption, a pair of
bifurcating modes are born, implying that the
stability change gives rise to a pitch-fork
bifurcation.

Synge(1926) derived a stability equation,
B+ QDB=0 (5)



where B is the disturbance which is measured
orthogonally from the normal mode, and

Q) = Kv* +3x%* + LV nnm;

in which K is Gaussian curvature, v the
speed of normal mode C°, x the curvature of
C', V;=9vvV, and =; the the unit vector
orthogonal to C°. Then a normal mode is said

to be stable in the kinematic-statical sense if
every solution to Eq (5) is bounded.

Fig. 4 The disturbance vector 'ﬁ (';) is based
on Liapunov sense)

Let 2T be the periodic of normal mode.
Then the period of @ is T. Let £(#H and
B, be the normalized solutions of Eq(5);
B0)=1, A(0)=0 and B(0)=0, B(O)=1.
Then the characteristic multiplier A satisfies,

2= (B(D+ B(THA+1=0
Blt+ D)= A8H

(6

Let us choose #=0 when the normal mode
passes through the origin. Then Q(— 9= (9.
Due to Magnus and Winkler(1979), the
following hold;

BT =28(T/2) BLT/2)—1
=28(TI2) B T/2) +1

ﬁz( D = ﬁl( D (7)
B(D=28(TI2)B(T/2)
B TI=28(T/2) B T/2)

Since the normal mode changes its stability
at A=1 or -1, the stability criterion is due to

Eq (7
BATID=0, A(T/D=0, i=1,2. (8

It is noted that at ¢= 7/2, the normal mode
arrives at the rest point. When A=1 or -1, Eq
(5)  has solutions, called the
eigenfunctions, denoted bt g°(f) and the
corresponding

periodic
systems parameters the
eigenvalues which present the transition curves
in the stability chart.

Proposition2. Let §'() be an eigenfuction of
stability equation for a normal mode in a
system S. Assume that the normal mode starts
from the origin of configuration space at ¢=0.
Then there are four types of B'(#), expressed
as follows;

BLT/2)=0 if and only if B°(9) is
odd and of period 2T,

Type 1 .

B(= 3 busin(2n—Dat .

Type 2 . B(T/2)=0 if and only if £'(d is
odd and of period T,
B(H= zlb,sinant .

Type 3 . B(7/2)=0 if and only if B8°(9 is
even and of period 27,
F(i= F ayeos(2n—Dot .

Type 4 . A(T/2)=0 if and only if £°() is
even and of period 7,
B (D=ay+ gla.COSant .

for which the normal mode is expressed as

x (D= 21A,,sin @2n—1wt ©

()= 218.,5&1 @2n—Dwt

By utilizing the geometry of envelope which
is crerated on 4I'(h) and by showing that
Eq(5) is identical to Jacobi differential equation,
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the following Theorems are proven by
Pak(1999),

Theorem 3. If a normal mode in a 'system
S changes its stability through the criterion
B(T/2)=0 or A,(T/2)=0, then the bifurcating
modes, described in Lemma. 1 are born in the
form of eigenfunction.

Theorem 4. Assume that the potential energy
Wx) and the inertial coefficients m;(x) are
symmetric with respect to a similar normal
mode in a system S. If the similar normal
mode changes its stability through A,(7/2)=0

or A(T/2)=0, then the bifurcating modes are

born in the form of eigenfunction.

4. Procedure of computations

Procedures are formulated to compute
bifurcating modes by the method' of harmonic
balance. By assuming that normal modes are
close to straight lines, let us transform the
coordinate system such that the normal mode
is on the new x-axis. Then the bifurcating
mode may be computed by

HH= 314 ,8in (2~ Dot
H)=cB(H
in which ¢ is a constant to be determined.

Since normal modes and bifurcating modes are
expressed in infinite series, the first few terms

(10

are used for the generating function to
compute the bifurcating mode.

A generating function is said to be perfect if
it is substituted in th equations of motion and
balanced harmonically, then the resulting series
are expressed in the form of generating
function.

Proposition 5. The following generating
function is perfect;

o= ﬁ;A,-sin(zj— Dot
7 an

K0 = 3 Bjsin (2~ Dat

To prove it, Eq(11) is substituted into the
equations of motion and harmonically balanced
to obtain

f;X;(A. B,w) sin(2j— Det=0
= (12)
31 ¥/A, B,o) sin (2 Dat=0

Proposition 6. Assume that there are two
similar normal modes, x=0 and =0, in a

system S which has cubic nonlinearity in
elasticity and in inertia. If the y=0 mode

changes its stability, then the generating
function is perfect for every stability criterion,
B(TI2)=0 or B{T/2)=0, j=1, 2. In words,

the following generating functions ‘are perfect;
for £(T/2)=0,

o= glA..sin(Zn—l)wt,

A= ilB,cos(Zn—l)wt
for A(T/2)=0,
x(O= 3 Ausin(@n—Dot
K= 3 B cosnot
for By(T/2)=0,
HD= 3 Ausin(2n—Dat
K= 3 B,sin2not
for A(T/2)=0,

)= 3 A,sin(2n— Do,

W)= 213,,sin(2n—l)wt.
Similarly, if the x=0 mode changes its

stability, a perfect generating function is



obtained by exchanging x(# and »(#) of above

equations.

Example 1. Given an elastically - coupled

nonlinear system
K=+ + 57

=12+ D)+t + b+ o

(13)

the equations of motion are
#+x+4a + 2007 =0, y+ prv+28x’y+4cy’=0.

There are two similar modes: the x-mode

(y=0) and y-mode(x=0), the x-mode is

written as x=Acoswt, y=0, o°=1+3aA’

Let y=48,

#;—2} +(8+2ecos20=0 (14)

where r=wt and

2 2
= =bA° s pr (b2 2
6-—-270) +2¢, €= 207 or §=p* = (=" p" —2)e(15)

(o) stability chart

Fig. 5 Bifurcation of the x-mode
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(a) stwbility chert

Fig. 6 Both the x- and y-mode changes
the stability

For various parameters p, a, & and c, the
stability of x-mede and y-mode, and the
resulting bifurcating modes are shown in Fig 5
and 6.

Example 2. An inertially coupled nonlinear
system is given by

K= '%'(1 +ay2)232+'% ¥, V= ‘zL(x2+.sz2). (16)

The equations of motion are
A+ a))x+2ayyz+ Lx=0
y—ax’y+y=0

There are two similar modes; the x-mode

(y=0) and y-mode(x=0). The x-mode is
written as x= AsinQ¥, y=0. Let y=48. Then

{fr +(8+2ecos20)A=0 an

6=1/L+2, e=—1/4aA’, =0t
Similarly, the y-mode is written as x=0,
y= Bsint. By letting x=§, one obtains

[14 &(1 - cos2D] B+ 2&( sin2) B+ @*4=0.(18)

where

Then the stability charts are shown in Fig. 7
and 8.
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Fig. 7 Stability chart for x-mode
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Fig. 8 Stability chart for y-mode
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For G»1, the x-mode becomes unstable
when the the motion curve intercepts the
transition curve 8=~ 1/2¢*
eigenfunction A°(H=1—1/2ecos22t. Then the
generating function is given by

whose

x=Asinwt, y=B+ Ccos2wt (19)

By substituting into the equations of motion,
one obtains

Al 2* — 0~ aw*(B*+ BC+ -%- AAHl=0
B- % aw’A’(B+-%— 0O=0 (20),

(1 —4wz)C—-%-aAz(B+ O=0

For a given A, B, C and &

are computed
to construct the backbone curves.

A forcing system is said to be a natural
forcing function if it is in the form of
generating function in which each coefficient is
arbitrary chosen and small. Then every
single-mode excitation is a natural forcing
function. As an example, the natural forcing
function for the bifurcation mode given by
Eq(19) is f(f)=F;sinwt, f,=Fy+ Fycos2wt. If
the system(16) is excited by this natural
forcing function, then the forced response is
computed by Eq(20) in which the right-hand
sides are replaced by F,, F, and F,,
respectively. Then the forcing response is close
to the bifurcating mode
If the initial condition is chosen in the
neighborhood of the unstable x-mode and if
the forcing system is f ()= Fsinot, f()=0

with relatively large F,, then the forced
response may be quasi-periodic or chaotic.
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