Numerical Modeling of Soot Formation in $C_2H_4$/Air Turbulent Non-premixed Flames

$C_2H_4$/Air 비예혼합 난류화염의 매연생성 모델링

  • Received : 2010.10.09
  • Accepted : 2010.12.15
  • Published : 2010.12.31

Abstract

The Direct Quadrature Method of Moments (DQMOM) has been presented for the solution of population balance equation in the wide range of the multi-phase flows. This method has the inherently interesting features which can be easily applied to the multi-inner variable equation. In addition, DQMOM is capable of easily coupling the gas phase with the discrete phases while it requires the relatively low computational cost. Soot inception, subsequent aggregation, surface growth and oxidation are described through a population balance model solved with the DQMOM for soot formation. This approach is also able to represent the evolution of the soot particle size distribution. The turbulence-chemistry interaction is represented by the laminar flamelet model together with the presumed PDF approach and the spherical harmonic P-1 approximation is adopted to account for the radiative heat transfer.

Keywords

References

  1. B. Hu, B. Yang, U. O. Koylu, "Soot measurements at the axis of an ethylene/air non premixed turbulent jet flame", Combustion and Flame, Vol. 134, 2003, pp. 93-106 https://doi.org/10.1016/S0010-2180(03)00085-3
  2. B. Hu, U. O. Koylu, "Size and morphology of soot particulates sampled from a turbulent nonpremixed acetylene flame", Aerosol Science and Technology, Vol. 38, 2005, pp. 1009-1018
  3. B. Hu, B. Yang, U. O. Koylu, "Mean soot volume fractions in turbulent hydrocarbon flames: a comparison of sampling and laser measurements", Combustion Science and Technology, Vol. 177, 2005, pp. 1603-1626 https://doi.org/10.1080/00102200590959233
  4. N. Peters, "Laminar flamelet concepts in turbulent combustion", Proceeding 21st Symposium International Combustion, Combustion Institute, Pittsburgh, pp. 1234-1250
  5. H. Pitsch, N. Peters, "A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects", Combustion and Flame, Vol. 114, 1998, pp. 26-40 https://doi.org/10.1016/S0010-2180(97)00278-2
  6. D. L. Marchiso, A. A. Barresi, "Investigation of soot formation in turbulent flames with a pseudobivariate population balance model", Chemical Engineering Science, Vol. 64, 2008, pp. 294-303
  7. M. Fairweather, W. P. Jones, R. P. Lindstedt, "Predictions of radiative transfer from a turbulent reacting jet in a cross-wind", Combustion and Flame, Vol. 89, 1992, pp.45-63 https://doi.org/10.1016/0010-2180(92)90077-3
  8. J. B. Moss, C. D. Stewart, K. J. Young, "Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen enriched conditions", Combustion and Flame, Vol. 101, 1995, pp.491-500 https://doi.org/10.1016/0010-2180(94)00233-I
  9. K. Lee, M. W. Thring, J. Beer, "On the rate of combustion of soot in a laminar soot flame", Combustion and Flame, Vol. 6, 1962, pp. 137-145 https://doi.org/10.1016/0010-2180(62)90082-2
  10. N. A. Fuch, Mechanics of Aerosols, Pergamon Press, New York, 1964
  11. M. F. Modest, Radiative Heat Transfer, second ed., Elsevier Science, USA, 2003, pp. 472-478
  12. R. J. Kee, F. M. Rupley, J. A. Miller, "Chemkin II: A Fortran chemical kinetics package for analysis of gas phase chemical kinetics", Sandia National Laboratories Report, 1989, SAND 89-8009B
  13. URL http://www.me.berkeley.edu/gri_mech
  14. S. S. Sazhin, "An approximation for the absorption coefficient of soot in a radiating gas", Manuscript of Fluent, 1994
  15. G. H. Kim, S. M. Kang, Y. M. Kim, R. W. Bilger, M. J. Cleary, "Conditional moment closure and transient flamelet modeling for detailed structure and NOx formation characteristics of turbulent nonpremixed jet and recirculating flames", Combustion Theory and Modeling., Vol. 11, 2007, pp. 527-552 https://doi.org/10.1080/13647830600985297
  16. S. M. Kang, "Parallel unstructured-grid finitevolume method for chemically reacting flows at all speeds", Ph.D. Thesis University of Hanyang, Seoul, Korea, 2002
  17. M. Frenklach, H. Wang, "In Soot Formation Combustion, Mechanisms and Models", Bockhorn H. Ed. Springer Series in Chemical Physics, Vol. 59, 1994, Springer-Verlag, pp. 165-192
  18. F. Mauss, B. Trilken, H. Breitbach, N. Peters, "In Soot Formation Combustion, Mechanisms and Models", Bockhorn, H. Ed. Springer Series in Chemical Physics, Vol. 59, 1994, Springer-Verlag, pp. 325-349
  19. R.P. Lindstedt, "In Soot Formation Combustion, Mechanisms and Models", Bockhorn, H. Ed. Springer Series in Chemical Physics, Vol. 59, 1994, Springer-Verlag pp. 417-441
  20. I. M. Kennedy, C. Yam, D. C. Rapp, R. J. Santoro, "Modeling and measurements of soot and species in a laminar diffusion flame", Combustion and Flame, Vol. 107, 1996, pp. 368-382 https://doi.org/10.1016/S0010-2180(96)00092-2
  21. A. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley, "OPPDIF: A Fortran Program for Computing Opposed-Flow Diffusion Flames", Sandia Report. SAND96-8243. Livermore
  22. J. C. Ferreira, "Flamelet Modeling of Stabilization in Turbulent Non-premixed Combustion", PhD Thesis, ETHZ Zuerich Switzerland
  23. W. A. Sirignano, "Volume averaging for the analysis of turbulent spray flows", International Journal of Multiphase Flow, Vol. 31, 2005, pp. 675-705 https://doi.org/10.1016/j.ijmultiphaseflow.2005.02.005
  24. R. O. Fox, F. Laurent, M. Massot, "Numerical simulation of spray coalescence in an Eulerian framework: Direct quadrature method of moments and multi-fluid method", Journal of Computational Physics, Vol. 227, 2008, pp. 3058-3088 https://doi.org/10.1016/j.jcp.2007.10.028
  25. O. Desjardins, R. O. Fox, P. Villedieu, "A quadrature-based moment method for dilute fluidparticles flows", Journal of Computational Physics, Vol. 227, 2008, pp. 2514-2539 https://doi.org/10.1016/j.jcp.2007.10.026
  26. R. G. Gordon, "Error Bounds in Equilibrium Statiscal Mechanics", Journal of Mathematical Physics, Vol. 9, No. 5, 1968, pp. 655-663 https://doi.org/10.1063/1.1664624
  27. D. L. Marchiso, R. O. Fox, "Solution of population balance equations using the direct quadrature method of moments", Journal of Aerosol Science, Vol. 36, 2005, pp. 43-73 https://doi.org/10.1016/j.jaerosci.2004.07.009
  28. S. B. Pope, "An explanation of the turbulent round-jet/plane-jet anomaly", American Institute of Aeronautics and Astronautics Journal, Vol. 16, 1978, pp. 279-281 https://doi.org/10.2514/3.7521
  29. K. M. Leung, R. P. Lindstedt, W. P. Jones, "A simplified reaction mechanism for soot formation in nonpremixed flames", Combustion and Flame, Vol. 87, 1991, pp. 289-305 https://doi.org/10.1016/0010-2180(91)90114-Q
  30. U. Vandsburger, I. Kennedy, I. Glassman, "Sooting Counterflow Diffusion Flames with Varying Oxygen Index", Combustion Science and Technology, Vol. 39, 1984, pp. 263-285 https://doi.org/10.1080/00102208408923792