• Title/Summary/Keyword: Hardy operator

Search Result 72, Processing Time 0.022 seconds

MIXED RADIAL-ANGULAR INTEGRABILITIES FOR HARDY TYPE OPERATORS

  • Ronghui Liu ;Shuangping Tao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1409-1425
    • /
    • 2023
  • In this paper, we are devoted to studying the mixed radial-angular integrabilities for Hardy type operators. As an application, the upper and lower bounds are obtained for the fractional Hardy operator. In addition, we also establish the sharp weak-type estimate for the fractional Hardy operator.

SZEGÖ PROJECTIONS FOR HARDY SPACES IN QUATERNIONIC CLIFFORD ANALYSIS

  • He, Fuli;Huang, Song;Ku, Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1215-1235
    • /
    • 2022
  • In this paper we study Szegö kernel projections for Hardy spaces in quaternionic Clifford analysis. At first we introduce the matrix Szegö projection operator for the Hardy space of quaternionic Hermitean monogenic functions by the characterization of the matrix Hilbert transform in the quaternionic Clifford analysis. Then we establish the Kerzman-Stein formula which closely connects the matrix Szegö projection operator with the Hardy projection operator onto the Hardy space, and we get the matrix Szegö projection operator in terms of the Hardy projection operator and its adjoint. At last, we construct the explicit matrix Szegö kernel function for the Hardy space on the sphere as an example, and get the solution to a Diriclet boundary value problem for matrix functions.

MATRICES OF TOEPLITZ OPERATORS ON HARDY SPACES OVER BOUNDED DOMAINS

  • Chung, Young-Bok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1421-1441
    • /
    • 2017
  • We compute explicitly the matrix represented by the Toeplitz operator on the Hardy space over a smoothly finitely connected bounded domain in the plane with respect to special orthonormal bases consisting of the classical kernel functions for the space of square integrable functions and for the Hardy space. The Fourier coefficients of the symbol of the Toeplitz operator are obtained from zeroth row vectors and zeroth column vectors of the matrix. And we also find some condition for the product of two Toeplitz operators to be a Toeplitz operator in terms of matrices.

COMPUTATION OF THE MATRIX OF THE TOEPLITZ OPERATOR ON THE HARDY SPACE

  • Chung, Young-Bok
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1135-1143
    • /
    • 2019
  • The matrix representation of the Toeplitz operator on the Hardy space with respect to a generalized orthonormal basis for the space of square integrable functions associated to a bounded simply connected region in the complex plane is completely computed in terms of only the Szegő kernel and the Garabedian kernels.

GENERALIZING HARDY TYPE INEQUALITIES VIA k-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS INVOLVING TWO ORDERS

  • Benaissa, Bouharket
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.271-280
    • /
    • 2022
  • In this study, We have applied the right operator k-Riemann-Liouville is involving two orders α and β with a positive parameter p > 0, further, the left operator k-Riemann-Liouville is used with the negative parameter p < 0 to introduce a new version related to Hardy-type inequalities. These inequalities are given and reversed for the cases 0 < p < 1 and p < 0. We then improved and generalized various consequences in the framework of Hardy-type fractional integral inequalities.

ON THE q-EXTENSION OF THE HARDY-LITTLEWOOD-TYPE MAXIMAL OPERATOR RELATED TO q-VOLKENBORN INTEGRAL IN THE p-ADIC INTEGER RING

  • Jang, Lee-Chae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.207-213
    • /
    • 2010
  • In this paper, we define the q-extension of the Hardy-Littlewood-type maximal operator related to q-Volkenborn integral. By the meaning of the extension of q-Volkenborn integral, we obtain the boundedness of the q-extension of the Hardy-Littlewood-type maximal operator in the p-adic integer ring.

AN ELEMENTARY COMPUTATION OF HANKEL MATRICES ON THE UNIT DISC

  • Chung, Young-Bok
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.691-700
    • /
    • 2021
  • In this paper, we compute directly the Hankel matrix representation of the Hankel operator on the Hardy space of the unit disc without using any classical kernel functions with respect to special orthonormal bases for the Hardy space and its orthogonal complement. This gives an elementary proof for the formula.

WEAK BOUNDEDNESS FOR THE COMMUTATOR OF n-DIMENSIONAL ROUGH HARDY OPERATOR ON HOMOGENEOUS HERZ SPACES AND CENTRAL MORREY SPACES

  • Lei Ji;Mingquan Wei;Dunyan Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.1053-1066
    • /
    • 2024
  • In this paper, we study the boundedness of the commutator Hb formed by the rough Hardy operator H and a locally integrable function b from homogeneous Herz spaces to homogeneous weak Herz spaces. In addition, the weak boundedness of Hb on central Morrey spaces is also established.