• 제목/요약/키워드: Hamiltonian matrix

검색결과 24건 처리시간 0.027초

EQUIVARIANT MATRIX FACTORIZATIONS AND HAMILTONIAN REDUCTION

  • Arkhipov, Sergey;Kanstrup, Tina
    • 대한수학회보
    • /
    • 제54권5호
    • /
    • pp.1803-1825
    • /
    • 2017
  • Let X be a smooth scheme with an action of an algebraic group G. We establish an equivalence of two categories related to the corresponding moment map ${\mu}:T^{\ast}X{\rightarrow}g^{\ast}$ - the derived category of G-equivariant coherent sheaves on the derived fiber ${\mu}^{-1}(0)$ and the derived category of G-equivariant matrix factorizations on $T^{\ast}X{\times}g$ with potential given by ${\mu}$.

Effective Hamiltonian of Doubly Perturbed Systems

  • Sun, Ho-Sung;Kim, Un-Sik;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권5호
    • /
    • pp.309-311
    • /
    • 1985
  • When a molecule is perturbed by an external field, the perturbed moecue can be described as a doubly perturbed system. Hartree-Fock operator in the absence of the field is the zeroth order Hamiltonian, and a correlation operator and the external field operator are perturbations. The effective Hamiltonian, which is a projection of the total Hamiltonian onto a small finite subspace (usually a valence space), has been formally derived. The influence of the external field to the molecular Hamiltonian itself has been examined within an effective Hamiltonian framework. The first order effective expectation values, for instance electromagnetic transition amplitudes, between valence states are found to be easily calculated - by simply taking matrix elements of the effective external field operator. Implications of the terms in perturbation expansion are discussed.

LQ 제어와 근의 이동범위를 이용한 조단 블록을 갖는 중근을 두 실근으로 이동시키는 극배치 방법 (Pole Placement Method to Move a Equal Poles with Jordan Block to Two Real Poles Using LQ Control and Pole's Moving-Range)

  • 박민호
    • 한국산학기술학회논문지
    • /
    • 제19권2호
    • /
    • pp.608-616
    • /
    • 2018
  • 일반적으로 비선형 시스템은 1차와 2차 시스템의 곱의 형태로 선형화되며, 시스템의 근은 1차 시스템의 근과 2차 시스템의 중근, 서로 다른 두 실근, 복소근으로 구성된다. 그리고 LQ(Linear Quadratic) 제어는 성능지수함수를 최소화하는 제어법칙을 설계하는 방법으로 시스템의 안정성을 보장하는 장점과 가중행렬 조정으로 시스템의 근의 위치를 조정하는 극배치 기능이 있다. 가중행렬에 의해 LQ 제어는 시스템의 근의 위치를 임의로 이동시킬 수 있지만 시행착오 방법으로 가중행렬을 설정하는 어려움이 있다. 이것은 해밀토니안(Hamiltonian) 시스템의 특성방정식을 이용하여 해결 할 수 있다. 또한 제어가중행렬이 상수의 대칭행렬이면 제어법칙을 반복적으로 적용하여 시스템의 여러 근을 원하는 폐루프 근으로 이동시킬 수 있다. 이 논문은 해밀토니안 시스템의 특성방정식을 이용하여 조단 블록을 갖는 시스템의 중근을 두 실근으로 이동시키는 상태가중행렬과 제어법칙을 계산하는 방법을 제시한다. 삼각함수로 표현된 상태가중행렬로 해밀토니안 시스템의 특성방정식을 구한다. 그리고 이동된 두 실근이 특성방정식의 근이라는 조건에서 중근과 상태가중행렬의 관계식(${\rho},\;{\theta}$)을 유도한다. 상태가중행렬이 양의 반한정행렬이 될 조건에서 중근의 이동범위를 구한다. 그리하여 이동범위에서 선택한 두 실근을 관계식에 대입하여 상태가중행렬과 제어법칙을 계산한다. 제안한 방법을 간단한 3차 시스템의 예제에 적용해본다.

THE HAMILTONIAN SYSTEM WITH THE NONLINEAR PERTURBED POTENTIAL

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제15권2호
    • /
    • pp.195-206
    • /
    • 2007
  • We investigate the multiplicity of $2{\pi}$-periodic solutions of the nonlinear Hamiltonian system with perturbed polynomial and exponential potentials, $\dot{z}= JG^{\prime}(z)$, where $z:R{\rightarrow}R^{2n}$, $\dot{z}={\frac{dz}{dt}}$, $J=\(\array{0&-I\\I&0}\)$, I is the identity matrix on $R^n,G:R^{2n}{\rightarrow}R$, G(0, 0) = 0 and $G^{\prime}$ is the gradient of G. We look for the weak solutions $z=(p,q){\in}E$ of the nonlinear Hamiltonian system.

  • PDF

MULTIPLICITY RESULTS FOR THE PERIODIC SOLUTIONS OF THE NONLINEAR HAMILTONIAN SYSTEMS

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제19권2호
    • /
    • pp.141-151
    • /
    • 2006
  • We investigate the multiplicity of $2{\pi}$-periodic solutions of the nonlinear Hamiltonian system with almost polynomial and exponential potentials, $\dot{z}=J(G^{\prime}(z)+h(t))$, where $z:R{\rightarrow}R^{2n}$, $\dot{z}=\frac{dz}{dt}$, $J=\(\array{0&-I\\I&o}\)$, I is the identity matrix on $R^n$, $H:R^{2n}{\rightarrow}R$, and $H_z$ is the gradient of H. We look for the weak solutions $z=(p,q){\in}E$ of the nonlinear Hamiltonian system.

  • PDF

HAMILTONIANS IN STEINHAUS GRAPHS

  • Lim, Dae-Keun;Kim, Hye-Kyung
    • 대한수학회논문집
    • /
    • 제11권4호
    • /
    • pp.1137-1145
    • /
    • 1996
  • A Steinhaus graph is a labelled graph whose adjacency matrix $A = (a_{i,j})$ has the Steinhaus property : $a_{i,j} + a{i,j+1} \equiv a_{i+1,j+1} (mod 2)$. We consider random Steinhaus graphs with n labelled vertices in which edges are chosen independently and with probability $\frac{1}{2}$. We prove that almost all Steinhaus graphs are Hamiltonian like as in random graph theory.

  • PDF

LQ 제어와 근의 이동범위를 이용한 중근의 극배치 방법 (Pole Placement Method of a Double Poles Using LQ Control and Pole's Moving-Range)

  • 박민호
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.20-27
    • /
    • 2020
  • 일반적으로 비선형 시스템은 1차와 2차 시스템의 곱의 형태로 선형화되며, 시스템은 실근, 중근, 서로 다른 두 실근, 복소근의 4종류의 근을 가진다. 이 논문은 시스템이 가지는 4가지 근 중에서 조단블록을 갖는 중근을 복소근으로 이동시키는 LQ 제어의 가중행렬과 제어법칙을 설계하는 방법에 관한 것이다. 상태가중행렬을 제한 조건으로 하고 성능지수함수를 최소화하는 LQ 제어는 시스템의 안정성을 보장하고 시스템의 근을 이동시키는 극배치 기능을 가지고 있다. 그렇지만 이 방법은 시행착오 방법으로 설계 변수인 가중행렬을 설정하고, 이동되는 근의 위치를 정확히 지정할 수 없는 문제가 있다. 이 문제를 해결하기 위해 해밀토니안 시스템의 특성방정식을 대각행렬의 제어가중행렬과 삼각함수로 표현된 상태가중행렬을 이용하여 기술한다. 이동할 복소근이 이 특성방정식의 근이라는 조건에서 중근과 상태가중행렬의 관계식(𝜌, 𝜃)을 유도하고 상태가중행렬이 양의 반한정행렬이라는 조건에서 중근의 이동범위를 구하고, 좌표평면에 도시한다. 그려진 중근의 이동범위에서 복소근을 선택하여 관계식에 대입하여 상태가중행렬을 계산하고, 이것에서 제어법칙이 구한다. 예제에서 3차 시스템의 중근을 이동시키는 제어법칙의 설계과정을 통해 제안한 방법의 타당성을 확인하였다.

해밀톤 행렬의 성질을 이용한 지정된 디스크내의 극 배치법 (A Pole Assignment in a Specified Disk by using Hamiltonian Properties)

  • Van Giap Nguyen;Hwan-Seong Kim;Sang-Bong Kim
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.707-712
    • /
    • 1998
  • 본 논문에서는 선형 시불변 시스템에 대해 상태되먹임을 이용한 폐루프계의 지정된 영역내의 극배치법을 제안한다. 본 제안된 기법은 해밀톤 행렬의 하중행렬 Q의 설정에 의해 지정된 영역 (α중심, γ반경)내에 극배치가 가능함을 보인다. 먼저, Gershgorin의 이론을 적용하기 위해 해밀톤 행렬을 등가 변환시킨 후 행렬의 각 계수를 α와 γ의 관계를 이용하여 유도한다. 위의 관계를 만족하는 해밀톤 행렬의 각 하중행렬과 변환행렬을 이용하여 폐루프계의 상태되먹임 제어칙을 구한다. 또한 본 기법은 해밀톤 행렬과 최적제어와의 관계를 지니고 있으므로 얻어진 폐루프계는 최적제어법에서와 동일한 강인함을 가지게 된다. 끝으로 예제를 통하여 지정된 영역내의 극배치가 이루어짐을 보인다.

  • PDF

The Potential Energy Surfaces and Dipole Moment Functions of $NH_2$ by ab initio Effective Valence Shell Hamiltonian

  • 윤승훈;윤영속;박종근;선호성
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권9호
    • /
    • pp.985-993
    • /
    • 1998
  • The second order effective valence shell Hamiltonian ($H^v$), which is based on quasidegencrate many-body perturbation theory, is applied to determining the potential energy surfaces and the dipole moment functions of the various valence states of $NH_2$. The $H^v$ calculated values are found to be in good agreement with those of other ab initio calculations or experiments. It signifies the fact that the $H^v$ is a good ab initio method to describe the energies and properties of various valence states with a same chemical accuracy. Furthermore, it is shown that the lowest (second order for energy and the first order for property) order $H^v$ method is very accurate for small molecules like $NH_2$ and the matrix elements of Hv which are computed only once are all we need to accurately describe all the valence states simultaneously.

LQ 제어로 조단블록이 있는 중근을 실근으로 이동시키는 가중행렬 결정 방법 (Methods of Weighting Matrices Determination of Moving Double Poles with Jordan Block to Real Poles By LQ Control)

  • 박민호
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.634-639
    • /
    • 2020
  • 일반적으로 비선형 시스템은 1차와 2차 시스템의 곱으로 선형화할 수 있기 때문에 시스템은 2차 시스템의 중근, 복소근, 서로 다른 두 실근과 1차 시스템의 근을 극점으로 가진다. 이런 극점의 위치 변경으로 시스템의 안정성과 응답특성을 개선할 수 있어서 다양한 방법으로 극점을 이동시키는 제어기를 설계한다. 여러 방법 중에서 LQ 제어는 이득여유와 위상여유의 안정성을 보장한다. 그런데 시행착오 방법으로 가중행렬을 선택하여 원하는 응답특성을 얻기 때문에 극점의 위치를 임의로 지정하기 어렵다. 이 논문은 조단블록을 가진 다중 중근을 원하는 실근으로 이동시키는 LQ 제어의 가중행렬을 선택하는 방법에 관한 것이다. 대각행렬 형태의 제어가중행렬과 ρd와 ϕd의 2개 변수 상태가중행렬을 갖는 해밀토니안 시스템의 특성방정식에서 중근과 가중행렬의 관계식을 유도한다. 그리고 상태가중행렬이 양의 준정부호 행렬이 될 조건에서 실근으로 이동할 중근의 이동범위를 구하고, 좌표평면에 표현한다. 이 범위에서 극점을 선택하고, 관계식으로 가중행렬을 계산하는 방법을 제안한다. 그리고 예제를 통해 조단블록을 갖는 4개의 중근을 원하는 서로 다른 실근으로 이동시키는 가중행렬과 제어법칙의 계산과정을 통해 제안한 방법의 유용성을 확인하였다.