Let X be a smooth scheme with an action of an algebraic group G. We establish an equivalence of two categories related to the corresponding moment map ${\mu}:T^{\ast}X{\rightarrow}g^{\ast}$ - the derived category of G-equivariant coherent sheaves on the derived fiber ${\mu}^{-1}(0)$ and the derived category of G-equivariant matrix factorizations on $T^{\ast}X{\times}g$ with potential given by ${\mu}$.
When a molecule is perturbed by an external field, the perturbed moecue can be described as a doubly perturbed system. Hartree-Fock operator in the absence of the field is the zeroth order Hamiltonian, and a correlation operator and the external field operator are perturbations. The effective Hamiltonian, which is a projection of the total Hamiltonian onto a small finite subspace (usually a valence space), has been formally derived. The influence of the external field to the molecular Hamiltonian itself has been examined within an effective Hamiltonian framework. The first order effective expectation values, for instance electromagnetic transition amplitudes, between valence states are found to be easily calculated - by simply taking matrix elements of the effective external field operator. Implications of the terms in perturbation expansion are discussed.
일반적으로 비선형 시스템은 1차와 2차 시스템의 곱의 형태로 선형화되며, 시스템의 근은 1차 시스템의 근과 2차 시스템의 중근, 서로 다른 두 실근, 복소근으로 구성된다. 그리고 LQ(Linear Quadratic) 제어는 성능지수함수를 최소화하는 제어법칙을 설계하는 방법으로 시스템의 안정성을 보장하는 장점과 가중행렬 조정으로 시스템의 근의 위치를 조정하는 극배치 기능이 있다. 가중행렬에 의해 LQ 제어는 시스템의 근의 위치를 임의로 이동시킬 수 있지만 시행착오 방법으로 가중행렬을 설정하는 어려움이 있다. 이것은 해밀토니안(Hamiltonian) 시스템의 특성방정식을 이용하여 해결 할 수 있다. 또한 제어가중행렬이 상수의 대칭행렬이면 제어법칙을 반복적으로 적용하여 시스템의 여러 근을 원하는 폐루프 근으로 이동시킬 수 있다. 이 논문은 해밀토니안 시스템의 특성방정식을 이용하여 조단 블록을 갖는 시스템의 중근을 두 실근으로 이동시키는 상태가중행렬과 제어법칙을 계산하는 방법을 제시한다. 삼각함수로 표현된 상태가중행렬로 해밀토니안 시스템의 특성방정식을 구한다. 그리고 이동된 두 실근이 특성방정식의 근이라는 조건에서 중근과 상태가중행렬의 관계식(${\rho},\;{\theta}$)을 유도한다. 상태가중행렬이 양의 반한정행렬이 될 조건에서 중근의 이동범위를 구한다. 그리하여 이동범위에서 선택한 두 실근을 관계식에 대입하여 상태가중행렬과 제어법칙을 계산한다. 제안한 방법을 간단한 3차 시스템의 예제에 적용해본다.
We investigate the multiplicity of $2{\pi}$-periodic solutions of the nonlinear Hamiltonian system with perturbed polynomial and exponential potentials, $\dot{z}= JG^{\prime}(z)$, where $z:R{\rightarrow}R^{2n}$, $\dot{z}={\frac{dz}{dt}}$, $J=\(\array{0&-I\\I&0}\)$, I is the identity matrix on $R^n,G:R^{2n}{\rightarrow}R$, G(0, 0) = 0 and $G^{\prime}$ is the gradient of G. We look for the weak solutions $z=(p,q){\in}E$ of the nonlinear Hamiltonian system.
We investigate the multiplicity of $2{\pi}$-periodic solutions of the nonlinear Hamiltonian system with almost polynomial and exponential potentials, $\dot{z}=J(G^{\prime}(z)+h(t))$, where $z:R{\rightarrow}R^{2n}$, $\dot{z}=\frac{dz}{dt}$, $J=\(\array{0&-I\\I&o}\)$, I is the identity matrix on $R^n$, $H:R^{2n}{\rightarrow}R$, and $H_z$ is the gradient of H. We look for the weak solutions $z=(p,q){\in}E$ of the nonlinear Hamiltonian system.
A Steinhaus graph is a labelled graph whose adjacency matrix $A = (a_{i,j})$ has the Steinhaus property : $a_{i,j} + a{i,j+1} \equiv a_{i+1,j+1} (mod 2)$. We consider random Steinhaus graphs with n labelled vertices in which edges are chosen independently and with probability $\frac{1}{2}$. We prove that almost all Steinhaus graphs are Hamiltonian like as in random graph theory.
일반적으로 비선형 시스템은 1차와 2차 시스템의 곱의 형태로 선형화되며, 시스템은 실근, 중근, 서로 다른 두 실근, 복소근의 4종류의 근을 가진다. 이 논문은 시스템이 가지는 4가지 근 중에서 조단블록을 갖는 중근을 복소근으로 이동시키는 LQ 제어의 가중행렬과 제어법칙을 설계하는 방법에 관한 것이다. 상태가중행렬을 제한 조건으로 하고 성능지수함수를 최소화하는 LQ 제어는 시스템의 안정성을 보장하고 시스템의 근을 이동시키는 극배치 기능을 가지고 있다. 그렇지만 이 방법은 시행착오 방법으로 설계 변수인 가중행렬을 설정하고, 이동되는 근의 위치를 정확히 지정할 수 없는 문제가 있다. 이 문제를 해결하기 위해 해밀토니안 시스템의 특성방정식을 대각행렬의 제어가중행렬과 삼각함수로 표현된 상태가중행렬을 이용하여 기술한다. 이동할 복소근이 이 특성방정식의 근이라는 조건에서 중근과 상태가중행렬의 관계식(𝜌, 𝜃)을 유도하고 상태가중행렬이 양의 반한정행렬이라는 조건에서 중근의 이동범위를 구하고, 좌표평면에 도시한다. 그려진 중근의 이동범위에서 복소근을 선택하여 관계식에 대입하여 상태가중행렬을 계산하고, 이것에서 제어법칙이 구한다. 예제에서 3차 시스템의 중근을 이동시키는 제어법칙의 설계과정을 통해 제안한 방법의 타당성을 확인하였다.
본 논문에서는 선형 시불변 시스템에 대해 상태되먹임을 이용한 폐루프계의 지정된 영역내의 극배치법을 제안한다. 본 제안된 기법은 해밀톤 행렬의 하중행렬 Q의 설정에 의해 지정된 영역 (α중심, γ반경)내에 극배치가 가능함을 보인다. 먼저, Gershgorin의 이론을 적용하기 위해 해밀톤 행렬을 등가 변환시킨 후 행렬의 각 계수를 α와 γ의 관계를 이용하여 유도한다. 위의 관계를 만족하는 해밀톤 행렬의 각 하중행렬과 변환행렬을 이용하여 폐루프계의 상태되먹임 제어칙을 구한다. 또한 본 기법은 해밀톤 행렬과 최적제어와의 관계를 지니고 있으므로 얻어진 폐루프계는 최적제어법에서와 동일한 강인함을 가지게 된다. 끝으로 예제를 통하여 지정된 영역내의 극배치가 이루어짐을 보인다.
The second order effective valence shell Hamiltonian ($H^v$), which is based on quasidegencrate many-body perturbation theory, is applied to determining the potential energy surfaces and the dipole moment functions of the various valence states of $NH_2$. The $H^v$ calculated values are found to be in good agreement with those of other ab initio calculations or experiments. It signifies the fact that the $H^v$ is a good ab initio method to describe the energies and properties of various valence states with a same chemical accuracy. Furthermore, it is shown that the lowest (second order for energy and the first order for property) order $H^v$ method is very accurate for small molecules like $NH_2$ and the matrix elements of Hv which are computed only once are all we need to accurately describe all the valence states simultaneously.
일반적으로 비선형 시스템은 1차와 2차 시스템의 곱으로 선형화할 수 있기 때문에 시스템은 2차 시스템의 중근, 복소근, 서로 다른 두 실근과 1차 시스템의 근을 극점으로 가진다. 이런 극점의 위치 변경으로 시스템의 안정성과 응답특성을 개선할 수 있어서 다양한 방법으로 극점을 이동시키는 제어기를 설계한다. 여러 방법 중에서 LQ 제어는 이득여유와 위상여유의 안정성을 보장한다. 그런데 시행착오 방법으로 가중행렬을 선택하여 원하는 응답특성을 얻기 때문에 극점의 위치를 임의로 지정하기 어렵다. 이 논문은 조단블록을 가진 다중 중근을 원하는 실근으로 이동시키는 LQ 제어의 가중행렬을 선택하는 방법에 관한 것이다. 대각행렬 형태의 제어가중행렬과 ρd와 ϕd의 2개 변수 상태가중행렬을 갖는 해밀토니안 시스템의 특성방정식에서 중근과 가중행렬의 관계식을 유도한다. 그리고 상태가중행렬이 양의 준정부호 행렬이 될 조건에서 실근으로 이동할 중근의 이동범위를 구하고, 좌표평면에 표현한다. 이 범위에서 극점을 선택하고, 관계식으로 가중행렬을 계산하는 방법을 제안한다. 그리고 예제를 통해 조단블록을 갖는 4개의 중근을 원하는 서로 다른 실근으로 이동시키는 가중행렬과 제어법칙의 계산과정을 통해 제안한 방법의 유용성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.