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The second order effective valence shell Hamiltonian (引),which is based on quasidegenerate many-body 
perturbation theory, is applied to determining the potential energy surfaces and the dipole moment functions of 
the various valence states of NH2. The IF calculated values are found to be in good agreement with those of 
other ab initio calculations or experiments. It signifies the fact that the /F is a good ab initio method to 
describe the energies and properties of various valence states with a same chemical accuracy. Furthermore, it is 
shown that the lowest (second order for energy and the first order for property) order FT method is very 
accurate for small molecules like NH2 and the matrix elements of /T which are computed only once are all we 
need to accurately describe all the valence states simultaneously.

Introduction

The quasidegenerate many-body perturbation theory 
(QDMBPT) is a Rayleigh-Schrodinger perturbation theory 
for quasidegenerate case. Here the quasidegeneracy means 
that states of interest are neither nondegenerate nor 
degenerate, rather the states lie very closely to each other in 
energy.1~3 One of such quasidegeneracy may be found in 
valence electronic states of molecules. The effective valence 
아lell Hamiltonian (H“) theory is nonetheless the QDMBPT 
but the name comes from the fact that the quasidegenerate 
states are valence states. In 顼,the valence states are 
defined as states within valence space which is a small 
configuration state function space composed of prechosen 
valence orbitals. The reason why only valence space is 
considered in IT is that the valence states are the most 
important states in chemistry. But the generality is not lost 
here because if one wants another states, say Rydberg states, 
one can easily expand the valence space to include 
whatever states of interest. The valence states in valence 
space may not be quasidegenerate. This problem is 
adequately solved in the effective valence shell Hamiltonian 
by giving a flexibility in defining the zeroth order 
Hamiltonian and molecular orbital energies. Therefore the 
/T can be considered as the most rigorous quasidegenerate 

many-body perturbation theory.
IT has been applied to various atoms,many diatomics,7~14 

triatomics,15,16 and polyenes.17-22 Energy levels, excitation 
energies, ionization potentials, electron affinities, potential 
energy curves, transition dipole moments, oscillator 
strengths, and radiative transition probabilities are 
investigated using H叩pOr polyenes not only valence 
states but also Rydberg states as an example of intruder 
states are studied.17~22 But for triatomics, except for the 
orbital structure change of BeH2,1516 no applications of FT 
have not been made yet.

In the present work we apply the second order fT to 
determining the potential energy surfaces, relating quantities, 
and dipole moment functions of the valence states of NH2. 
While several theoretical studies on NH2 have been 
published,23'31 not many experimental studies have been 
reported.32~37 Among theoretical works Peyerimhoff et alJs 
MRD-CI work is the most extensive so that it provides a 
good example to compare our H" results with.30 The 
purpose of the present work is to verify how well the 
effective valence shell Hamiltonian can reproduce the 
dipole properties as well as the valence state potential 
energy surfaces of triatomics with an example of NH2. 
Therefore detailed analyses on the electronic structures of 
NH2 are not presented, instead the focus lies on the nature 
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of H1 method itself.
In the following section, the introduction of IT and its 

extended form for molecular property calculation is made. 
The detailed explanations on computational procedure and 
comparison of IT results with other theoretical or 
experimental data follow. Conclusions are provided in the 
last section.

Theory

The full molecular Schrodinger equation is written as,

HW=EW (1)

Now let {©} be a complete set of all possible determinantal 
or configuration state functions within a given orbital basis 
set. Then T may be expanded in this basis as,

甲(2) 
k

where {CA} is the set of expansion coefficients. Partitioning 
theory is now utilized to reexpress the Schrodinger equation 
(1) in terms of a subset of the expansion coefficients {CA}.

Define a primary space, P, as containing some prechosen 
set, {6j, ZUP), of all the configurations. The remaining 
functions, {Q, jU Q}, form the secondary Q space. That is 
P + Q = 1. A full ab initio calculation involves all the 
configurations within P space along with a complementary 
set of configurations in Q space. The core, valence, and 
excited orbitals form a complete set of orbitals. The 
configuration state functions in Q space contain either 
excited orbitals and/or core to valence excitations.

The wavefunctions 中 can be represented as a linear 
superposition of all possible determinantal functions,

甲=X C, Q + £ C, Q (3)
i e P i W Q

We utilize a matrix representation where CP designates the 
column vector of the expansion coefficients C, for /UP, CQ 
for those j U Q. The Schrodinger equation (1) can then be 
expressed in supermatrix form as, 

Hpp HpQ C」 c/
HQP Hqq 5 =E (4)

where HPP = <0, |H\ for i, FU P denotes the sub-block 
of the Hamiltonian matrix within P space, HPQ = <(|)； | H \(t)y> 
for Z U P, j U Q that between P and Q, etc. Equation (4) is 
equivalent to the pair of coupled equations

HppCp + HPqCq = ECp (5 a)
H()pCp + HqqCq 프 ECq (5b)

Rearranging (5b), we can formally solve this equation for 
Cq to give

C0 = (El0-WQQ)-]HQPCp (6)

where 1Q is the unit matrix in Q space, and the inverse 
matrix is taken solely within Q space. Substituting (6) into 
(5a) gives the well-known partitioned Hamiltonian,

HG 三[Hpp + Hpq(E1q - H"侦对 Cp = ECP (7) 

which is the desired equation solely in the primary space P. 

Equation (7) involves the effective Hamiltonian, H*  defined 
only in P space, and has eigenvalues E identical to those of 
the full Schrodinger equation (1).

With the aid of quasidegenerate many-body perturbation 
theory, we can expand (7) to obtain energy independent 
form of HL Let P be a valence space, which consists of all 
valence configuration state functions. The inverse matrix in 
equation (7) can be expanded with respect to a certain 
reference energy, Eo, to obtain an (equivalent) energy 
independent form of HL This proceeds by dividing the full 
Hamiltonian into two parts,

H = (8)

where Ho is the zeroth-order Hamiltonian (possibly a one- 
electron operator) and V is the perturbation. When is 
chosen to be a Fock operator, V represents the so called 
'correlation energy".

To obtain the practical form of the (8) can be 
projected onto the P. Then the resulting H" is

ZT = PH# + PVP + PVQ(Eq - Ho)1 QVP +■■■ (9)

where P is a projector onto P space and Q a projector onto 
Q space. Then, quasidegenerate many-body perturbation 
theory gives the second order approximation,

HV=PHP + 1 ^[P(A)VQ(En-Hf^QVP(人‘)+ h.c. ] (10) 
2 A, A,

where h.c. designates the Hermitian conjugate of the 
preceding term and P(A) designates the projector onto the 
valence space basis function | A>. The explicit details of the 
formulations are given in references 5 and 6. The present 
study utilizes only the second order expansion, where the 
denominators in the inverse matrix in (10) are taken as only 
the orbital energy contributions to diagonal matrix elements.

in equation (4) or (7) includes all the valence 
configurations.

It can be shown that the (10) has matrix elements 
between determinantal functions which differ by 0, 1, 2, 3, 
…，nv valence shell orbitals, where nv is the number of 
electrons in the valence shell, i.e., in the P space. This, 
therefore, implies that the operator form of IT cannot be 
represented s이ely in terms of one- and two-electron 
interactions, 너; and H. (m아ecular integral operators). In 
general fT must contain three-, •••, Hv-electron operators,

H”=Ec+文矿+§房處+ * £必+…(11) 
z =1 Z i = 1 » = \

where Ec is the core energy, H忒 is a three-electron 
operator, etc. Suppose the 2街，lb2, 3%, lb1? 4ab and 2b2 
orbitals are chosen as the valence orbitals for NH2, /T only 
has matrix elements within a 2街，lb2, 3aB lbb 4街，and 2b2 
basis. For example, the nonzero one-electron matrix 
elements are <2ar\H^,\2a1>, <lb2|///| lb2>, <3缶 | 13街>,

vlbi |/拿 I 1也>,<4% I Hi" I <2b21Hi \ 2b2>, etc. 
Similarly the two-electron parts, and three-electron 
parts, Hi/, have matrix elements which do not vanish by 
molecular symmetry. Within the second order approxi­
mation of ZT, no four- and higher-electron interaction terms 
appear.

Note that, once the matrix elements of H：, f 
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have been evaluated, it is then a straightforward task to 
diagonalize FT, to obtain all the valence state energies. 
Although /T may have been evaluated through a calculation 
for one particular set of valence orbitals (e.g., those valence 
orbitals could be chosen from the set of self-consistent field 
(SCF) orbitals for the ground state of the neutral molecule), 
the same FT can be utilized for all charge states of the 
system (i.e., the ions). It means that we do not need a 
separate ab initio calculation for each charge state. H1 is, in 
principle, exact for all these charge states, so if the 
primitive orbital basis is sufficiently good, fF should 
represent them well provided the approximations in treating 
the Q space in equation (7) are not too severe.

Now we consider the property of molecule which can be 
represented with an operator A. The AT can be extended to 
describing molecular properties. Consider an operator A 
whose diagonal and off-diagonal matrix elements between 
the normalized full space 나匕 we desire. The matrix elements

I 나七〉may be transformed with quasidegenerate many­
body perturbation theory into the matrix elements of an 
effective valence shell operator Av between the orthonormal 
valence space effective eigenfunctions 甲广，

<T, |A I 나p 三 <^,V\AV\ 나？、 (12)

Again, the specification that Av be Hermitian and 
independent of the state leads to the lowest nontrivial 
order perturbative expansion,5

Av =PAP+^[P(A)VQ(En-Hn)~i 奸 S’) + h.c. ] (13) 
A,A,

Thus, we may obtain the expectation values of A by first 
solving equation (7) and then by taking the corresponding 
matrix elements on the right-hand side of equation (12). 
The quasidegenerate many-body methods dispense with the 
numerical evaluation of the full space wavefunctions 坪匕，so 
a new effective Av must be evaluated for each operator A 
separately. However, once this Av is obtained, it provides, in 
principle, all diagonal and off-diagonal matrix elements in 
the P space. One object of the present calculations is to 
determine whether all these matrix elements can be 
evaluated accurately from a perturbative truncation such as 
equation (13).

Either direct algebraic methods or many-body theory 
techniques can be used to reduce equation (13) to 
expressions for the matrix elements of Av in the valence 
orbital basis. In the operator representation, Av is,

£*  + 方：+?$：& + ... (14)
1 = 1 Z F =[

where A/ is the constant contribution from the core, A,v is a 
one-electron operator with matrix elements <v|A,v|v'> in 
the valence orbital basis {v}, etc. The original full space 
operator, A, may have one- and two-electron contributions, 
here we consider only the dipole operator which is one- 
electron operator. The close correspondence between 
equations (10) and (13) enables the straightforward 
determination of Av from the formulas for the matrix 

elements of 7F. For dipole, A =£% where e is an 

electronic charge, n is the number of total electrons, and r( 

is a position vector for electron i. Nuclear contribution is 
separately calculated and added later following the Born- 
Oppenheimer approximation. A one-electron operator A 
generates two-electron effective valence space operators A/ 
in the lowest nontrivial order specified by (13). This 
parallels the emergence of three-electron operator 
contributions in (ll)5,38.

The whole perturbation procedure is completely specified 
once the orbital basis and are chosen. Diagonalization of 
the perturbative /T in the P valence space yields the 
valence state energies and eigenfunctions 나7. The latter 
may then be employed along with (12) to calculate the 
expectation values of property operator A by use of the 
effective valence shell operator Av.

Computations

A basis set is chosen as a set of contracted Gaussian 
functions. The (9s5p) basis set for nitrogen in the 
contraction [4s3p] as suggested by Dunning24 was employed 
and augmented by one polarization d function with an 
exponent of 0.67,25 one Rydberg s function with an 
exponent of 0.03726 and one Rydberg p function with an 
exponent of 0.01.26 The basis set for hydrogen consists of a 
(4s)/[2s] basis given by Dunning24 and one polarization p 
function with an exponent of 1.08.25

With the prechosen basis set, the SCF calculations are 
performed for the ground state (la" 2a" lb22 3a" lb/) 
of NH2. We have to have molecular integrals and orbital 
energies in order to evaluate each ZT matrix elements. 
Molecular integrals are obtained from transforming integrals 
between basis functions with the SCF molecular orbital 
coefficients. The orbital energies are usually SCF orbital 
energies, that is, expectation values of Fock operator. The 
zeroth-order Hamiltonian is defined to be diagonal with 
orbital energies as diagonal elements. We used the SCF 
orbital energies in evaluating FT matrix elements of NH2. 
Orbital energies are taken from the diagonal elements of 
Fock operator of the ground state of NH2. To 
guarantee the fast convergence of the second order FT, 
orbital energies for the valence orbitals are arithmetically 
averaged. The perturbative expansion of fT always 
converges when both of the orbital energy gap between the 
highest core orbital and the lowest valence orbital and the 
orbital energy gap between the highest valence orbital and 
the lowest excited orbital are larger than the gap between 
the lowest and the highest valence orbital energies.

In IF calculations, the valence space has to be predeter­
mined and it consists of configuration state functions arising 
from 2ab lb2, 3ab lbB 4aB and 2b2 orbitals. This choice is 
appropriate because these orbitals mainly come from 
valence 2s and 2p orbitals of nitrogen and Is orbitals of 
two hydrogens. The 1街 molecular orbital consists 
predominantly of nitrogen Is atomic orbital. Therefore the 
1 aj orbital is considered as a core orbital where 
configuration is always 1 허% The 3% has N-H and H-H 
bonding character whereas the lb2 has mainly N(in-plane 
2p)-H and H-H antibonding character. The lb〔 is essentially 
the nitrogen 2p (out-of-plane) orbital. Low-lying virtual 
orbitals are the 4a〔 and 2b2 orbitals, which are also from the 
nitrogen valence orbitals. Other higher-lying orbitals are 
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classified as excited orbitals. However, one should note that 
the tT naturally includes all of core-core, core-valence and 
core-excited correlation, etc.

As shown in the theory section, /尸 spans only within the 
valence space. In numerical calculations it means that we 
need to evaluate matrix elements of IT only between 
valence orbitals to determine the valence state energies. In 
the previous FF calculations it has been verified that the 
second order /T contains most of electron correlations when 
small molecules like NH2 are of interest. The corrections to 
the averaging first appear in the third order expansion FT 
terms but we believe, from our experience, that these 
correction terms are small for small molecules like NH2. So 
in the present work, we adopt the second order fF 
formalism.

In FT matrix element calculations, the core energy (Ec) is 
negative, one-electron matrix elements (H：) are generally 
negative, but two-electron matrix elements (HJ) are positive 
as expected. The three-electron matrix elements (H云)are 
usually small. However, the neglect of those three-electron 
matrix elements give erroneous results in the valence state 
energies. Of course the diagonal H" matrix elements are 
larger than the off-diagonal elements.

The NH2 molecule is assumed to lie in the yz plane with 
the z axis taken to be collinear with the C2 symmetry 
element in bent geometry. The whole IT calculations have 
been repeated by changing intemuclear distances (Rb R2) of 
the two N-H bonds and bond angle (0) between HNH. The 
intemuclear distances between N and H vary from 1.4 a.u. 
to 6.0 a.u. and the angle between HNH varies from 40° to 
180°. The asymmetric variance of N-H intemuclear distance, 
z.e., two N-H distances (R1T R2) are different, is also 
performed.

The effective valence shell Hamiltonian formalism has 
been extended to treat operators for properties other than 
the valence state energies. The lowest order correlation 
corrections for the effective operators are analyzed for 
molecular properties corresponding to one-electron operators, 
and explicit computations were performed for the dipole 
moments of several low lying electronic states of NH2.

The dipole operator in atomic unit is defined as 

qWa-L (15)
a

whererm Za is the charge on the nucleus a at the position 
n

Ra, and r is the position operator for all electrons, r = £".

The minus sign in (15) indicates a charge of electron. 
Within the Born-Oppenheimer approximation the nuclear 
contribution is constant for a given molecular

a
geometry, and thus it is only necessary to evaluate the 
diagonal and off-diagonal matrix elements of the electronic 
position operator .

As in equation (12), to evaluate dipole moment (when A = 
-r and i is equal to j) we have to first calculate the 
effective wavefunction WJ. It means that the IT energy 
calculations must be performed before Av calculations. 
Therefore the choice of basis set, valence orbitals, and 
orbital energies, etc. in Av calculations should be identical 
with those in fT energy calculations. The extra works in 
dipole moment calculations are evaluation of dipole 

integrals and of Av matrix elements.
The dipole moment functions of NH2 are calculated for 

the three lowest valence states with C2v and Cs symmetry, 
respectively. The three lowest states are X2Bb A2Ab and 
B2B2 states which have been well studied before. The C2v 
symmetry means that the two bond lengths between N and 
H are always equal and the bond angle of HNH is fixed (an 
equilibrium bond angle of NH2) but N-H distance changes. 
The Cs symmetry means that the bond angle and one of the 
two N-H bond lengths are fixed (equilibrium values) but the 
two N-H distances are different from each other (M., the 
other N-H distance changes). The intemuclear distance 
between N and H varies from 1.4 a.u. to 6.0 a.u.

Results and Discussion

Potential Energy Surfaces. The results of the fT 
calculations, i.e., eguilibrium geom의ry and state energies, 
are listed for the ^2B1, A2A15 and B2B2 states in Table 1. 
The potential energy surfaces (C2v symmetry) for the 
valence states are displayed in Figure 1 as a function of the 
HNH bond angle 0 and the NH bond length R. As 아lown 
in Table 1, our results for the and A2A] states are in
good agreement with experimental or other theoretical 
values. And the B2B2 state has not yet been determined 
spectroscopically but the comparison of our results with 
other theoretical values shows a reasonable agreement. We 
learn that the equilibrium geometries of the three states are 
quite different to each other. Furthemore Figure 1 indicates 
that the second order IT calculations are accurate enough to 
determine potential energy surfaces of NH2 and ZF method 
itself produces several state energies with same accuracy 
simultaneously.

The higher excited states are not much investigated 
before. To demonstrate the usefulness of IF method we 
have calculated the potential energy surfaces of the next 
two excited states, Le., and 2為.Needless to say, we

three states of NH2 (C2v)
Table 1. Equilibrium geometry and total energy for the lowest

Method Re (A) e 0 Energy (au)
京2巳

IT 1.026 103.8 -55.866248
Fun cr 1.024 103.4 -55.742620
STO-3G" 1.058 100.2
Dz^cr 1.029 103.1 -55.734051
MR-SDCf 1.013 104.3 -55.749321
Expt： 1.024 103.3

A2A( -55.816704
/r 1.000 147.0 -55.688762
Fun cr 0.999 144.0
STO-3G" 1.015 131.3 -55.680149
DZdpCf 0.999 143.4
Expt/ 1.004±0.03 144±5

b2b2
H” 1.138 50.0 -55.681858
DZder 1.184 46.8 -55.532042
DZdpb 1.162 47.5 -55.557980
MRD-CF 1.130 50.0 -55.602670

Ref. 39.*Ref. 42. "Ref. 40. "Ref. 43. 'Refs. 44, 45, and 46.
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used the same matrix elements of H7 which were used to 
calculate the energies of lower valence states to evaluate the 
energies of these high lying states. The dominant 
configurations for the excited states of NH2 are

(la])2 (2aa)2 (2b) (3a) (lb) (4a) 2沮 state 
(la])2 ^2허3 (2b2)2 (3a!)2 (4a) 22A1 state

Contrary to the lowest three valence states, the orbital is 
occupied in the two states.

For the 2沮 state, the equilibrium geometry and energy 
were computed to be Re = 1.148 A, 0 = 180.0°, and E = 
-55.645167 au. Other theoretical calculation (MC-CEPA) 
for the 22Bt state also revealed that 0 = 180.0°, Le., NH2 is 
linear.29 For the 22A] state, Re= 1.042 A, 0 = 110.0°, and E = 
-55.616954 au. Other theoretical values are 105.0° (MC- 
CEPA)29 and ^100.0° (MRD-CI)28 for the bond angle of 
HNH, respectively. Our /T values are slightly different from 
other theoretical values, but experimental geometry is not 
known yet. The potential energy surfaces for these states 
are displayed in Figure 2 as a function of the HNH bond 
angle 0 and the NH bond length R.

Dissociation and Excitation Energies. There may 
be two dissociation processes; one is NH2^N + H + H (C2v 
symmetry), the other is NH2^NH + H (Cs symmetry). For 
the NH2^N + H + H (Figure 3) process, the /F calculated 

Figure 1. The potential energy surfaces for X2Bb A2A, and B2B2 
states of NH2. Two NH bond lengths are always kept equal (C2v).

Figure 2. The potential energy surfaces for the 22Bj and 22AT 
states of NH2. Two NH bond lengths are always kept equal (C2v).

dissociation energies, De are as follows.

NH.fBi)一 赋 S) + H(2 S) + H(2 S) 
NIL/Ai)— Nf D) + H(2 S) + H(2 S) 
NH2(B2B2)^N(2 D) + H(2 S) + H(2 S) 
NH)22B])一 N(4 P) + H(2S) + H(2 S) 
NH)22Ai)—-N<2 P) + H(2S) + H(2 S)

Dc = 8.92 eV
De = 10.24 eV
De = 6.56 eV
De = 6.62 eV
IL = 5.85 eV

For the NH2^NH + H (Figure 4) process, one H atom is 
far removed from the NH fragment and dissociation energy 
is calculated with the pseudodiatomic model (NH-H). The 
dissociation energies are;

NH2(12A 尸 NH03 X) + H(2 S)
(疽 A) + H(2 S) 

皿(2稻一，NH(H £+) + H(2 S) 
nhWM— NH^ A，n)+H(2 S)

U = 4.75 eV
De = 4.57 eV
De =1.36 eV
De =1.36 eV

After overcoming a barrier of about 1.90 eV, the 
state energy drops down steeply to the dissociation products 
of NH(a〔 A) + H(2 S). The reason for the barrier is probably 
a weak avoided crossing with higher-lying 2Af, states.30

To illustrate the dissociation process more clearly, the 
two dimensional potential energy curves are provided in 
Figures 3 and 4. In Figure 3, the HNH bond angle is fixed 
at its equilibrium value and the potential energy curve is 
drawn along the change of N-H bond length (The two N-H 
bond lengths are kept equal all the way). From the figure, 
we see that our /T calculated potential curves are very 
smooth and lead to correct separate atom limits. Also the 
ordering of five states are correctly manifested. In Figure 4, 
another dissociation process is shown in terms of energy 
and geometry. The separate atom limits are NH + H. For the 
process, the dissociating enegies are smaller than that for N 
+ H + H dissociation. The 아ate (22 A,f state in Cs
symmetry) has a small energy barrier as mentioned before.

Not only the dissociation energies but also the excitation

R (NH,au)

Figure 3. The potential energy curves for the five lowest-lying 
states of NH2 dissociating into N + H + H at the equilibrium an이e 
of HNH.
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R (NH.au)
Figure 4. The potential energy curves for the five lowest-lying 
states of NH2 as a function of one N-H bond length, keeping the 
other N-H distance and the bond angle fixed at the equilibrium 
values.

Table 2. Vertical excitation energy (eV)
MRD-Cf MRD-Cf

国A】—童乌 2.32 2.161 2.20
6.76 6.639 6.50

2?务—京2乌 6.90 7.633 7.62
6.84 7.690 7.55

Refs. 26 and 28. b Ref. 30.

energies can be determined from the full potential energy 
surfaces. Table 2 lists the vertical excitation energies 
between the ground 汨B、and the excited states. Vertical 
excitation energies are the state energy differences when the 
geometry of NH2 is fixed at the initial state, Le., the ground 

state. The energy differences between the minima of 
potential energy surfaces of two states are adiabatic 
excitation energies. The adiabatic excitation energies are 
also calculated and listed in Table 3. In the Tables we 
compare our 7T values with other available data and they 
are in good agreement to each other.

Overall the H" method reproduces various dissociation 
and excitation energies for various valence states with a 
same accuracy. It is an advantage of Zf method and we 
prove the usefulness of IT with its current application to 
NH2.

Dipole Moment Functions. The dipole moments for

N DZ^pCK MBPF Expt：

Table 3. Adiabatic excitation energy (eV)

屋A」—京] 1.45 1.47 1.41 1.40
B2B2^X2Bx 5.02 4.79
22B,^X2B, 6.02
2务〈一定B] 6.98
Ref. 40. ftRef. 41. cRef. 47.

R(NH,au)
Figure 5. The dipole moment functions for the three valence 
states of NH2 dissociating into N + H + H at the equilibrium angle 
of HNH.

the three lowest valence states as a function of intemuclear 
distance of N-H are presented in Figure 5. The total dip이e 
moments at equilibrium geometry are listed in Table 4. As 
shown in Table 4, our Av values are in good agreement with 
other theoretical values, indicating that the second order IT 
formalism combined with the first order Av is accurate 
enough.

In Figure 5 (NH2一厂N + H + H), the positive value 
indicates the polarity of N& 2H&L In the figure, the two N-H 
distances are always kept equal and the HNH bond angle is 
always fixed at equilibrium angle. At the range of small and 
medium R, the dipole moment is positive, which indicates

Ta비e 4. Dipole moments for the lowest three states. R and 0 
are an equilibrium geometry at which dipole moment is evalu­
ated

Method Re (A) 9 O Dipole

Av 1.026 103.8 0.796
MGE° 1.080 101.8 0.720
DZ# 1.014 104.8 0.840
DZ时 

A2A[
1.013 104.8 0.824

1.000 147.0 0.334
MGE* 1.040 133.6 0.323
DZ# 0.992 M0.9 0.348
DZdp” 

B2B2
0.989 142.4 0.323

1.138 50.0 1.325
MGEfl 1.620 26.5 0.354
DZdph 1.156 46.3 1.181

Ref. 48. bRef. 40.
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Figure 6. The dipole moments (z-component) for the three 
valence states of NH2 as a function of one N-H bond length, 
keeping the other N-H distance and the bond angle fixed at the 
equilibrium values.
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Figure 7. The dipole moments (y-component) for the three 
valence states of NH2 as a function of one N-H bond length, 
keeping the other N-H distance and the bond angle fixed at the 
equilibrium values.
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that the nitrogen atom has an negative end. As the bond 
distances become larger, the dipole moments of all the three 
states become negative where the redistribution of electrons 
occurs and the nitrogen becomes positive. This 
phenomenon is frequently found in small molecules.31 As R 
becomes very large, the dipole moments reach to zero 
because at the separate atom limits, NH2 is completely 
dissociated into neutral atoms (N, H, and H). Dipole 
moment is a vector property, Le., g = |ixx + |iyy + j^z. In our 
coordinate system, |ix is always zero because triatomic 
molecule (NH2) is, of course, planar. When NH2 has a C2v 
symmetry, i.e., two N-H bond lengths are equal, gy is also 
zero. So only gz component is nonzero and the dipole 
vector is along the z-axis. For C2v case, we can always 
replace R with |iz. Figure 5 shows the C2v case.

In Figures 6 and 7, the dip이e moment functions of the 
three states are 아for the process of NH2—>NH + H. In 
this case, the bond angle is fixed but the two N-H distances 
are different. When NH2 has a Cs symmetry, i.e., two N-H 
bond lengths are different, not only |史 but also |iy is 
nonzero. So the direction of jl vector is in between y and z 
axis. For Cs case, jl has two components and Figure 6 
shows the gz component and Figure 7 shows the 卩、

As shown in Figures 6 and 7, the behavior of dipole 
moment component with respect to N-H distance is rather 
complicated. Since other experimental or theoretical studies 
on this kind of dipole moment functions have not been 
reported, we can not assess the accuracy of our results. The 
physical meaning of dipole moment functions along this 
study should be investigated further. Figure 8 presents the 
magnitude of dipole moments, Le.,冋=仙 + 以 The 
direction of |i changes as R varies so that it is difficult to

1.2 -

(
금
)
 =1
릍오-

o

 으
 a

2 3 4 5 6

R(NH,au)

Figure 8. Magnitude of dipole moments for the three valence 
states of NH2 as a function of one N-H bond length, keeping the 
other N-H distance and the bond angle fixed at the equilibrium 
values.

present the dipole moment vector in a form of figure. From 
the figure, we can, at least, verify that, at very large R 
distance, the magnitude of NH2 dipole moment becomes 
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equal to that of NH molecule, as expected. From a single 
Av calculation for dipole moments, the transition dipole 
moments are also sirmiltaneou이y computed but they are not 
reported in the present article.

Conclusions

The potential energy surfaces of NH2 molecular system 
have been determined using the ab initio second order 
effective valence shell Hamiltonian method. Since the ZT is 
defined within a valence space, the same /T matrix 
elements were used to determine all valence states. The 
three-electron matrix elements are found to be important in 
evaluating valence state energies accurately.

The overall structure of the calculated potential energy 
surfaces for various states of NH2 have been reproduced 
accurately and they are in good agreement with those of 
other ab initio calculations. It indicates that the IT method 
includes the electron correlations properly.

The extended effective valence shell Hamiltonian 
formalism JV) to treat operators for properties other than 
valence state energies is relatively new method. The dipole 
moments of NH2 system have been determined as a 
function of internuclear distances using the lowest order 
effective Hamiltonian Av method. It is noted once again that 
one set of Av matrix elements at a given geometry yields 
the dipole moments for all the valence states of NH2 and 
this feature of the method greatly reduces the computational 
effort. Our computed dip이e moments are also in reasonable 
agreement with other theoretical values.

The current work strongly indicates that i.e., the 
effective valence shell Hamiltonian for property, is as 
efficient and accurate as fT energy method. In summary, 
using the H" and Av method, we have determined the many 
valence electronic structu호es of NH2 very accurately.
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Acid catalyzed hydrolysis of 1 -phenoxyethyl propionate, I, has been studied using the PM3 method in the gas 
phase. The first step of the reaction is the protonation of basic sites, three different oxygens in I, producing 
three protonated species II, III and IV. All possible reaction pathways have been studied from each protonated 
structure. Changes in the reaction mechanisms have also been discussed from the results obtained by varying a 
nucleophile from a water monomer to a water dimer to a complex between one water molecule and an 
intermediate product (propionic acid or phenol) produced in the preceding unimolecular dissociation processes. 
Minimum energy reaction pathway is 2-W among the possible pathways, in which water dimer acts as an 
active catalyst and therefore facilitates the formation of a six-membered cyclic transition state. Lower barrier of 
2-W is ascribed to an efficient bifiinctional catalytic effect of water molecules. PM3-SM3.1 single point 
calculations have been done at the gas-phase optimized structure (SM3.1/PM3//PM3) to compare theoretical
results to those of experimental work.

Introduction

Alkanoates have two special functional groups, ester and 
actetal, and the hydrolysis of the alkanoates has been 
studied extensively due to the mechanistic importance of 
this compound as an intermediate of the enzymic reactions.1 
Mechanistic studies on the hydrolysis of alkanoates have 
been done experimentally under the acidic, basic, and 
neutral conditions.2 Especially, hydrolysis reactions of ester 
functional group in acidic or basic condition are known to 
be fast and these are classified into 8 different reaction 
mechanisms.3 Under the acidic condition, the reaction is 
classified into two different modes - acyl and alkyl bond 
cleavages. The reactions are classified as Aac1 or Aac2 in 
the former case, and as A^l or Aal2 in the latter case 
depending on the number of molecule involved in the rate 
determining steps.

R. A. McClelland reported that the unimolecular 
mechanism is favorable in the case of acyclic system from 
the studies on the hydrolysis of cyclic and acyclic systems.4 
R. A. Cox and K. Yates proposed an A-l mechanism from 
the p values obtained by varying the concentration of acid 
under the dilute acid.5

Recently C. D. Hall and C. W. Goulding carried out an 

experimental study on the acid-catalyzed hydrolysis of 1- 
aryloxyethyl alkanoates (see eq. I).6 Products of the 
reaction are a carboxylic acid, an aldehyde and an alcohol.

H O
I HO II

EtCO2—C Me 브2으-EtCOzH + H—C—Me + XC6H4OH
I ⑴
OC6H4X
I

In their study, reaction mechanism was interpreted from the 
rate constants obtained under strong acidic (low pH) and 
strong basic (high pH) conditions and substituent effects of 
aryl ring and 1SO labelling experiments.7 The reactions are 
proposed to proceed through different mechanisms 
depending on the pH of the reaction medium. In acidic 
region, the reaction proceeds through an A-l mechanism 
(Aal-1) involving predissociation of a carbonium ion and 
subsequent attack by water. In basic condition, the 
mechanism is BAC2 and in the neutral region, the reaction is 
Aac2 mechanism which involves a nucleophilic attack of 
water molecule to the carbonyl group.8'15

In this study, computational method was used to interpret 
the complex mechanism of 1-phenoxyethyl alkanoate, I. In 
basic media, a tetrahedral intermediate can be easily formed 
by the addition of hydroxide ion to the carbonyl group 
without reaction barrier, and this mechanism has been


