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THE HAMILTONIAN SYSTEM WITH THE

NONLINEAR PERTURBED POTENTIAL

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the multiplicity of 2π−periodic solutions
of the nonlinear Hamiltonian system with perturbed polynomial and
exponential potentials, ż = JG′(z), where z : R → R2n, ż = dz

dt ,

J =
(

0 −I
I 0

)
, I is the identity matrix on Rn, G : R2n → R,

G(0, 0) = 0 and G′ is the gradient of G. We look for the weak
solutions z = (p, q) ∈ E of the nonlinear Hamiltonian system.

1. Introduction

We consider the classical Hamiltonian dynamics with n degrees of
freedom, the phase space is R2n = {(p, q)} endowed with the canonical
symplectic form

ω =
n∑

i=1

dpi ∧ dqi

and the Hamiltonian H(p, q). A typical Hamiltonian

H(q, p) =
1

2

n∑
i=1

p2
i + V (q)
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was studied by many (Hamiltonian) physicists. The Hamiltonian equa-
tions of motion are

q̇i =
∂H

∂pi

,

ṗi = −∂H

∂qi

= −∂V

∂qi

.

A function F (q, p) is an integral if Ḟ = 0. A Hamiltonian system with n
degrees of freedom having n independent integrals Fi(q, p) is called (com-
pletely) integrable (for brevity we say that a Hamiltonian is integrable)
if these integrals are in involution, i.e. that the Poisson bracket

{Fi, Fj} =
n∑

α=1

∂Fi

∂qα

∂Fj

∂pα

− ∂Fi

∂pα

∂Fj

∂qα

vanishes for any i, j.
By the Liouville-Arnold theorem (cf. [4]), equations of motion of

such systems can be in principle explicitly integrated which justifies the
terminology and the interest in integrable Hamiltonians. They have
been much studied by physicists because of exciting connections between
them and the seemingly unrelated subjects such as algebraic geometry
and theory of Lie groups.

Specialists in integrable Hamiltonian had shown a lot of ingenuity con-
structing integrals of motion. To illustrate this we have the nonperiodic
Toda lattice

H =
1

2

n∑
i=1

p2
i + eq1−q2 + · · ·+ eqn−1−qn .

Toda [17] introduced and studied the infinite version of the nonperiodic
Toda lattice (i runs from −∞ to ∞ ).

Bogoyablensky [8] put Toda lattice into the frame work of Hamil-
tonians with exponential potential. More precisely let f1, · · · , fN be
arbitrary vectors in Rn endowed with a Euclidean inner product and let
let c1, · · · , cN be arbitrary constants (N and n are not related). The
corresponding exponential potential is

V (q) =
N∑

k=1

cke
fk·q
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and the Hamiltonian is

H(p, q) =
1

2
p · p + V (q).

Bogoyablensky [8] studied the above Hamiltonians satisfying certain
additional conditions which appear in the theory of Einstein cosmological
models. The Bogoyablensky Hamiltonian can be thought of as pertur-
bations of the Toda lattice. The many old (Hamiltonian) physicists had
studied the integrability of the Hamiltonian and had many results for the
integrability of the Hamiltonian satisfying certain additional conditions.
However, the the integrable Hamiltonians are the particular phenomena
among the Hamiltonian equations of motion.

Therefore we are concern with the generalized perturbed Hamiltonian
satisfying certain additional conditions.

In this paper we are concerned with the multiple periodic solutions
of the Hamiltonian system with perturbed polynomial and exponential
potentials

ż = JG′(z), (1.1)

where z : R → R2n, ż = dz
dt

, J =

(
0 −I
I 0

)
, I is the identity matrix on

Rn, G : R2n → R, and G′ is its gradient. Let a · b and | · | denote the
usual inner product and norm on R2n. G will be required to satisfy the
following conditions:
(G1) G ∈ C1(R2n, R), G(0, 0, . . . , 0) = 0 and G is even function.
(G2) There exist µ > 2, r0 ≥ 0 such that

0 < µG(z) ≤ G′(z) · z for every |z| ≥ r0.

(G3) There exist 1 < p1 ≤ p2 < 2p1 + 1, αi > 0, βi ≥ 0, for i = 1, 2 such
that

α1|z|p1+1 − β1 ≤ G(z) ≤ α2|z|p2+1 + β2, for every z ∈ R2n.

(G4) There exist 0 < q2

2
< q1 ≤ q2 < 2 and αi, τi > 0, βi ≥ 0, for

i = 1, 2, such that

α1e
τ1|z|q1 − β1 ≤ G(z) ≤ α2e

τ2|z|q2 + β2, for every z ∈ R2n.

Our main results are

Theorem 1.1. Assume that G satisfies the conditions (G1) − (G3).
Then (1.1) possesses an unbounded sequence of 2π-periodic solutions.



198 Tacksun Jung and Q-Heung Choi

Theorem 1.2. Assume that G satisfies the conditions (G1), (G2)
and (G4). Then (1.1) possesses an unbounded sequence of 2π-periodic
solutions.

Such global existence problems have been studied extensively in re-
cent years. For the autonomous case of (1.1), the result was proved by
Rabinowitz under the conditions (G1) and (G2) ([13], [15]). His proof is
based on a group symmetry possessed by the corresponding variational
formulation. To prove the main results we use the ideas of critical point
theory. In section 2, we define a space X which is invariant under A
(Az =

∫ 2π

0
ż · J(z) dt), G′ and shift, and we introduce an invariant sub-

space V and a sequence of invariant subspace H−
m,∞⊕H+

m,0⊕H−
0,m of X

to apply to Theorem 2.2. In section 3, we prove Theorem 1.1. In section
4, we prove Theorem 1.2.

2. Spaces invariant under A, G, and shifts

Let X be a real Hilbert space on which the compact Lie group S1 acts
by means of time-translations, hence by orthogonal transformations; for
z ∈ X and θ ∈ [0, 2π], we define an S1-action on X by

(Tθz)(t) = z(t + θ), for all t ∈ [0, 2π].

Let Fix{Tθ} be the set of fixed points of the action, i. e.,

Fix{Tθ} = {z ∈ X| Tθz = z, ∀θ ∈ [0, 2π]}.
We say a subset B of X is S1-invariant if Tθz ∈ B, for all z ∈ B,
θ ∈ [0, 2π]. A function f : X → R1 is called S1-invariant, if f(Tθz) =
f(z), ∀z ∈ X, for all θ ∈ [0, 2π]. Let C(B, X) be the set of continuous
functions from B into X. If B is an invariant set we say h ∈ C(B, X) is
an equivariant map if h(Tθz) = Tθh(z) for all θ ∈ [0, 2π] and z ∈ B. Let
Sρ be the sphere centered at the origin, of radius r.
We need the following Theorem 2.1 in [10].

Theorem 2.1. Assume that
(f1) f ∈ C1(X,R) is S1-invariant,
(f2) There is a sequence of invariant finite dimensional vector subspaces

X1 ⊂ X2 ⊂ . . . ⊂ Xn, dim Xn = 2n,

with ∪∞n=1X
n = X, satisfying

(1) ((PS)ncondition): There exists n0 ∈ N such that ∀n ≥ n0, the
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restriction fn = f |Xn satisfies the (PS)c condition ∀c ∈ [a, b].
(2) ((PS)∗condition): For any sequence xn ∈ Xn, n = 1, 2, . . ., a ≤
f(xn) ≤ b and dfn(xn) → 0 imply a convergent subsequence.
(f3)′ There exist invariant subspaces X+ and X− with

j =
1

2
codimX+ < m =

1

2
dim X− < +∞,

where j and m are integers such that
(1) Fix{Tθ} ⊂ X−, Fix{Tθ} ∩X+ = {0},
(2) f(x) > a, ∀x ∈ X+ ∩ Sρ for some ρ > 0,
(3) f(x) < b, ∀x ∈ X−, a, b are regular values,
(4) Fix{Tθ} ∩ f−1[a, b] = φ.
Then f has at least m− j distinct critical orbits.

We obtain the following theorem which is the crucial role for the proof
of our main result.

Theorem 2.2. Suppose that f ∈ C1(X, R) is even with f(0) = 0,
and that
(1) there exist an invariant subspace V and α such that

f |V ⊥∩Sρ
≥ α,

(2) there exist two sequences of linear subspaces H+
0,m, H−

0,m with dim H+
0,m =

H−
0,m = m and Rm > 0 such that

f(x) ≤ 0, ∀x ∈ H−
m,∞⊕H0⊕H+

0,m⊕H−
0,m, |x| ≤ Rm, m = 1, 2, · · · .

If f satisfies (PS)∗ condition with respect to {H−
m,∞⊕H+

0,m⊕H−
0,m|m =

1, 2, · · · }, then f possesses infinitely many distinct critical points.

Proof. If not, f has at most l critical points. We choose m, j such
that H−

j,∞ ⊕ H+
0,j ⊂ H−

m,∞ ⊕ H+
0,m ⊕ H−

0,m. We choose m − j > l. Now,

(f1) is obviously true, with Fix{Tθ} = {0}. Let Xn = H+
0,n ⊕ H−

0,n.
Then (PS)n

c condition holds, by the condition (2). So (f2) is satisfied.
Let X+ = V ⊥, X− = H−

m,∞ ⊕ H0 ⊕ H+
0,m ⊕ H−

0,m, a = α, and b =
supx∈H−

m,∞⊕H+
0,m⊕H−

0,m
f(x)+1. Then (f3) holds. Applying Theorem 2.1.,

there are at least m− j pairs of critical points. This is a contradiction.
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3. Proof of Theorem 1.1

Let H = W
1
2
,2(S1, R2n). The scalar product in L2 naturally extends

as the duality pairing between H and H ′ = W− 1
2
,2(S1, R2n). Thus for

z ∈ H, the actional integral 1
2
A(z) is well defined, where

A(z) =

∫ 2π

0

ż · J(z)dt. (3.1)

The basic idea we use in trying to find periodic solutions of (1.1) is to
obtain them as critical points of the corresponding functional

f(z) =
1

2
A(z)−

∫ 2π

0

G(z) + dt. (3.2)

By the following proposition, f(z) is C1, even, and the critical point z
of f in H will be a weak solution of (1.1).

Proposition 3.1. Assume that G satisfy the assumptions of Theo-
rem 1.1 or Theorem 1.2. Then f(z) is continuous and Fréchet differen-
tiable in H with Fréchet derivative

Df(z)w =

∫ 2π

0

(ż − JG′(z)) · Jw

=

∫ 2π

0

[(−ṗ−Gq(z)) · ψ + (q̇ −Gp(z)) · φ] dt,

z ∈ (p, q) and w = (φ, ψ) ∈ H. Moreover
∫ 2π

0
G(z)dt ∈ C1. Thus f is

C1.

Proof. For z, w ∈ H,

|f(z + w)− f(z)−Df(z)w|

= |1
2

∫ 2π

0

(ż + ẇ) · J(z + w)−
∫ 2π

0

G(z + w)

− 1

2

∫ 2π

0

ż · Jz +

∫ 2π

0

G(z)−
∫ 2π

0

(ż − JG′(z)) · Jw|

= |1
2

∫ 2π

0

[ż · Jw + ẇ · Jz + ẇ · Jw]−
∫ 2π

0

[G(z + w)−G(z)]

−
∫ 2π

0

[(ż − JG′(z)) · Jw]|.
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We have

|
∫ 2π

0

[G(z + w)−G(z)]| ≤ |
∫ 2π

0

[G′(z) · w + o(|w|)]dt| ≤ o(|w|2).

Thus we have

|f(z + w)− f(z)−Df(z)w| ≤ o(|w|2).
Next we will prove that f(z) is continuous. For z, w ∈ H,

|f(z + w)− f(z)|

= |1
2

∫ 2π

0

(ż + ẇ) · J(z + w)−
∫ 2π

0

G(z + w)

− 1

2

∫ 2π

0

ż · Jz +

∫ 2π

0

G(z)|

= |1
2

∫ 2π

0

[ż · Jw + ẇ · Jz + ẇ · Jw]−
∫ 2π

0

[G(z + w)−G(z)]|
≤ o(|w|).

Let z be a function of W
1
2
,2([0, 2π], R2n). Then there exists one and

only one function of W
1
2
,2(R,R2n) which is 2π periodic in t and equals

to z on [0, 2π]; we shall denote this function by z. We set

H0 = span{e1, · · · , e2n},
H+ = span{(cos jt)ek + (sin jt)ek+n,

(sin jt)ek − (cos jt)ek+n| j ∈ N, 1 ≤ k ≤ n},
H− = span{(sin jt)ek + (cos jt)ek+n,

(cos jt)ek − (sin jt)ek+n| j ∈ N, 1 ≤ k ≤ n}.
and let

H+
m,l = span{(cos jt)ek + (sin jt)ek+n,

(sin jt)ek − (cos jt)ek+n| m ≤ j ≤ l, 1 ≤ k ≤ n},
H−

m,l = span{(sin jt)ek + (cos jt)ek+n,

(cos jt)ek − (sin jt)ek+n| m ≤ j ≤ l, 1 ≤ k ≤ n}.
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Then H = H+⊕H−⊕H0 and A(z) is positive definite, negative definite,
and null on H+, H−, and H0, respectively. For

z = z+ + z− + z0 ∈ H+ ⊕H− ⊕H0 = H,

we take a norm for H

‖z‖2
H = A(z+)− A(z−) + |z0|2.

Under this norm, H becomes a Hilbert space and H+, H−, H0 are or-
thogonal subspaces of H with respect to the inner product associated
with this norm, as well as the L2 inner product. One further analytical
fact about H is needed which is proved in [13].

Proposition 3.2. For each p ∈ [1,∞), H is compactly embedded in
Lp(S1, R2n). In particular there is an αp > 0 such that

‖z‖Lp ≤ αp‖z‖H

for all z ∈ H

Let X be the closed subspace of H defined by

X = {z ∈ H| aj = 0, if j is odd }
= {z ∈ H| z =

∑
[a2k cos 2kt + b2k sin 2kt]},

where z =
∑

j∈Z aje
ijt, aj = 1

2π

∫ 2π

0
z(t)e−ijtdt. Then X is a closed

invariant linear subspace of H and invariant under shifts; let z ∈ X and
τ be a real number, if v(t) = z(t + τ), then v ∈ X. X is invariant under

G′; let z ∈ X such that G′(z) ∈ W
1
2
,2([0, 2π], R2n), then G′(z) ∈ X.

Moreover A(X) ⊆ X, A : X → X is an isomorphism and ∇f(X) ⊆ X.
Therefore constrained critical points on X are in fact free critical points
on H. Moreover, distinct critical orbits give rise to geometrically distinct
solutions. From now on f will denote the restriction of f to X. Let
X+

m,l = X ∩H+
m,l, X−

m,l = X ∩H−
m,l, X+ = X ∩H+, X− = X ∩H−, and

X0 = X ∩H0. Let P+ be the orthogonal projection on X+ and P− be
the orthogonal projection on X−. The norm of z = P+z +P−z +z0 ∈ H
is

‖z‖2 =
1

2
‖P+z‖2 − 1

2
‖P−z‖2 + |z0|2.

The space Xm is a 2m dimensional subspace of X. By (G2), without
loss of generality, we assume that r0 ≥ 1. Set α0 = min

|z|=r0

G(z), β0 =
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β1 + max
|z|≤r0

|G(z)|, where β1 is given by (G3) or (G4). Conditions (G1)

and (G2) imply that, for some β3 ≥ 0,

α0|z|µ ≤ G(z) + β0 ≤ 1

µ
(G′(z) · z + β3) for all z ∈ R2n. (3.4)

Thus we have

f(z) ≤ 1

2
‖z‖2

H −
∫ 2π

0

G(z)dt

≤ 1

2
‖z‖2

H − α0

∫ 2π

0

|z|µ dt + 2β0π.

Since µ > 2, for any m ∈ N there exists an Rm > 0 such that

f(z) ≤ 0, ∀z ∈ X−
m,∞⊕X0⊕X+

m,0⊕X−
0,m and ‖z‖H ≥ Rm. (3.5)

PROOF OF THEOREM 1.1. Since G ∈ C1(R2n, R), G(0, 0) = 0
and G is even, f ∈ C1(X, R) and even with f(0) = 0. From (3.5), there
exists an Rm > 0 such that f(z) ≤ 0, ∀z ∈ X−

m,∞ ∪ X0 ∪ X+
0,m ∪ X−

0,m

and ‖z‖H ≥ Rm. Thus condition (2) of Theorem 2.2 holds. If z ∈
(X−

j,∞ ∪X+
0,j ∪X−

0,j)
⊥, then there exists εj with

lim
j→+∞

εj = 0

such that
‖z‖Lp ≤ εj‖z‖H , p ∈ [1,∞).

Then if z ∈ (X−
j,∞ ∪X+

0,j ∪X−
0,j)

⊥ and ‖z‖H = 1, then P−z = 0. So we
have

f(ρz) =
1

2

∫ 2π

0

(ρż) · J(ρz)dt−
∫ 2π

0

G(ρz)dt

=
1

2
‖P+(ρz)‖2 +

1

2
|(ρz)0|2 −

∫ 2π

0

G(ρz)dt

≥ 1

2
ρ2 − εj

α2

p2 + 1
|ρ|p2+1 − 2β2π.

Thus there exists ρ > 0 such that

f(ρz) ≥ 0, for z ∈ (X−
j,∞⊕X+

0,j⊕X−
0,j)

⊥∩Sρ and j large enough .
(3.6)

Set V = (X−
j,∞ ⊕ X+

0,j ⊕ X−
0,j)

⊥. For z ∈ V ⊥ ∩ Sρ and large enough
j, f(ρz) ≥ 0. Thus condition (1) of Theorem 2.2 holds. By (3.5) and
(3.6), f j = f |X−

j,∞⊕X0⊕X+
0,j⊕X−

0,j
satisfies (PS)∗ condition with respect to
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{X−
j,∞ ⊕ X0 ⊕ X+

0,j ⊕ X−
0,j|j = 1, 2, . . .}. Thus we proved Theorem 1.1.

4. Proof of Theorem 1.2

We need the following lemma which was proved in [9].

Lemma 4.1. For τ > 0, 0 < q < 2, there exist constant C1, C2 > 0,
depending only on τ and q, such that

∫ 2π

0

exp(στ |z|q)dt ≤ C1 exp(C2(σ‖z‖H)
q

2−q ),

for every σ > 0, z ∈ H.

Proof. We use the notations in [9]. We prove the lemma for H =

W
1
2
,2(S1, C). For z ∈ H, write

z(t) = C0 +
∑

n 6=0

Cn√
|n|e

int,

where cn ∈ C. Then z = k ∗ g, where

k(t) =
∑

n 6=0

1√
|n|e

int ∈ L(2,∞),

g(t) =
∑
n∈Z

cneint ∈ L(2, 2).

By (8) of [9],

στ |z∗|q ≤ (εστ)
2
q |z∗|2 + ε−

2
2−q

≤ (εστ)
2
q C[1 + | log t|]‖k‖2

L∞‖g‖2
L2 + ε−

2
2−q

for 0 < t < 1. Choose ε = 1
στ

(qC‖k‖2
L∞‖g‖2

L2)−
q
2 , then from ‖g‖L2 ≤

C‖z‖H and
∫ 2π

0
eστ |z|qdt =

∫ 2π

0
eστ |z∗|qdt, we get the lemma.

PROOF OF THEOREM 1.2 From (3.5), there exists Rm > 0 such
that f(z) ≤ 0, ∀z ∈ X−

m,∞⊕X+
0,m⊕X−

0,m and ‖z‖H ≥ Rm for any m ∈ N .

Thus condition (2) of Theorem 2.2 holds. If z ∈ (X−
j,∞ ⊕X+

0,j ⊕X−
0,j)

⊥,
then there exists εj with

lim
j→+∞

εj = 0
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such that
‖z‖Lp ≤ εj‖z‖H , p ∈ [1,∞).

Thus, if z ∈ (X−
j,∞ ⊕ X+

0,j ⊕ X−
0,j)

⊥ and ‖z‖H = 1, then P−z = 0. By
Lemma 4.1,

f(ρz) =
1

2
‖P+ρz‖2 +

1

2
|(ρz)0|2 −

∫ 2π

0

G(z)dt.

Thus we have

f(ρz) ≥ 1

2
ρ2 − C1α2e

C2(σεjρ2‖z‖H) q
2−q − 2β2π.

Thus there exists ρ > 0 such that

f(ρz) ≥ 0 for z ∈ (X−
j,∞⊕X+

0,j⊕X−
0,j)

⊥∩Sρ and j large enough .
(4.1)

By (3.5) and (4.1), f j = f |(X−
j,∞⊕X+

0,j⊕X−
0,j)

⊥ satisfies (PS)∗ condition.

Applying Theorem 2.2, we have that f(z) has infinitely many distinct
critical points. This proved Theorem 2.2.
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