• Title/Summary/Keyword: Hall Device

Search Result 156, Processing Time 0.054 seconds

Hall Effect Characteristics of InSb Thin Film (InSb 박막의 홀효과 특성)

  • Lee, Woo-Sun;Cho, Jun-Ho;Choi, Kun-Woo;Jeong, Yong-Ho;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.6-9
    • /
    • 2000
  • InSb hall effect of multilayerd structures were investigated. According to variation of magnetic field measured hall coefficient, Hall mobility, carrier density and hall voltage. For the measurement of electrical properties of hall device, evaperated InSb thin film fabricated with series and parallel multilayers. We found that the XRD analysis of InSb thin film showed good properties at $200^{\circ}C$, 60 minutes. Resistance of ohmic contact increased linearly due to increasing current. Some of device fabrication technique and analysis of Hall effect were discussed.

  • PDF

Temperature Dependent Mdbility Characteristics of InSb Thin Film (홀센서 InSb 박막 이동도의 온도의존성)

  • 이우선;조준호;최권우;김남오;김형곤;김상용;서용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.582-585
    • /
    • 2001
  • InSb temperature dependent hall effect of multilayerd structures were investigated. According to variation of magnetic field measured hall coefficient, Hall mobility, carrier density and hall voltage. For the measurement of electrical properties of hall device, evaperated InSb thin film fabricated with series and parallel multilayers. We found that the XRD analysis of InSb thin film showed good properties at 200$^{\circ}C$, 60 minutes. Resistance of ohmic contact increased linearly due to increasing current. Some of device fabrication technique and analysis of Hall effect were discussed.

  • PDF

Temperature Dependent Hall Effect Characteristics of InSb Thin Film (InSb 박막 홀효과의 온도의존성)

  • 이우선;조준호;최권우;김남오;김상용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.21-24
    • /
    • 2000
  • lnSb temperature dependent hall effect of multilayerd structures were investigated. According to variation of magnetic field measured hall coefficient, Hall mobility, carrier density and hall voltage. For the measurement of electrical properties of hall device, evaperated InSb thin film fabricated with series and parallel multilayers. We found that the XRD analysis of InSb thin film showed good properties at 20$0^{\circ}C$, 60 minutes. Resistance of ohmic contact increased linearly due to increasing current. Some of device fabrication technique and analysis of Hall effect were discussed.

  • PDF

The figure of merit for hall element materials (Hall소자 재료의 특성지수)

  • 이정한
    • 전기의세계
    • /
    • v.25 no.4
    • /
    • pp.53-58
    • /
    • 1976
  • Criteria and significance of the factor .root..mu..$R_{u}$ or ($R_{u}$/.root.p) in Hall element material selection are discussed. And the chart which is useful to compare the figure of merit F=.root..mu..$R_{u}$ in Hall element materials is presented with the F's for some practical Hall device materials.als.

  • PDF

Development of magnetic field measurement system for AMS cyclotron

  • Ho Namgoong;Hyojeong Choi;Mitra Ghergherehchi;Donghyup Ha;Mustafa Mumyapan;Jong-Seo Chai;Jongchul Lee;Hoseung Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3114-3120
    • /
    • 2023
  • A high-accuracy magnetic field measurement device based on a cyclotron is being developed for accelerator mass spectrometry (AMS). In this study, a magnetic field measurement device consisting of a Hall probe sensor, piezo-motor, and step motor was developed to measure the magnetic field of the AMS cyclotron magnet. The Hall probe sensor was calibrated to achieve positional accuracy by using polar coordinates. The measurement results between the ratchet gear and piezo-motor, which are the instruments used for driving the measurement device, were analyzed. The measurement result of the device with a piezo-motor exhibits a difference of 5 Gauss (0.04%) as compared with the simulation result.

Magnetic Sensitivity Improvement of 2-Dimensional Silicon Vertical Hall Device (2 차원 Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.392-396
    • /
    • 2014
  • The 2-dimensional silicon vertical Hall devices, which are sensitive to X,Y components of the magnetic field parallel to the surface of the chip, are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$ interface and n-epi layer to improve the sensitivity and influence of interface effect. Experimental samples are a sensor type K with and type J without $p^+$ isolation dam adjacent to the center current electrode. The results for both type show a more high sensitivity than the former's 2-dimensional vertical Hall devices and a good linearity. The measured non-linearity is about 0.8%. The sensitivity of type J and type K are about 66 V/AT and 200 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Anisotropy of the Hall Factor According to the Growth Direction in the Two-dimensional Device with Indirect Conduction Valley (간접천이대를 갖는 2차원 소자에서 성장방향에 따른 Hall 인수의 이방성 연구)

  • Kim, Jong Gu;Lee, Jae Chul;Chun, Sang Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.428-432
    • /
    • 2014
  • The Hall factor in a two-dimensional device with indirect conduction valleys is calculated for several growth on various strain conditions. In the [001] or [111] growth direction, the two-dimensional constant energy surfaces of occupied valleys are shown to be isotropically distributed. However, in the [110] growth direction, the distribution of occupied valleys on the plane is not isotropic. This fact is the reason for the anisotropic Hall factor on the sample plane.

Magnetic Sensitivity Improvement of Silicon Vertical Hall Device (Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo;Kim, Nam-Ho;Chung, Su-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2011
  • The silicon vertical hall devices are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$, interface and n-epi layer without $n^+$buried layer to improve the sensitivity and influence of interface effects. Experimental samples are a sensor type I with and type H without p+isolation dam adjacent to the center current electrode. The experimental results for both type show a more high current-related sensitivity than the former's vertical hall devices. The sensitivity of type H and type I are about 150 V/AT and 340 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

The Electrical Characterization of the Quantized Hall Device with GaAs/AlGaAs heterojunction structure (GaAs/AlGaAs 이종접합된 양자흘 소자의 전기적 특성)

  • 유광민;류제천;한권수;서경철;임국형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.334-337
    • /
    • 2002
  • The Quantum Hall Resistance(QHR) device which consists of GaAs/AlGaAs heterojunction structure is used for the realization of QHR Standard based on QHE. In order to characterize electrical contact resistances and dissipations of the device, it is slowly cooled down for eliminating thermal shock and unwanted noise. Then, the two properties are measured under 1.5 K and 5.15 T. Contact resistances are all within 1.2 Ω and longitudinal resistivities are all within 1 mΩ up to DC 90${\mu}$A. The results mean the device is operated well to realize the QHR Standard. To confirm it, the QHR Standard having the device is compared using a direct current comparator bridge with a 1 Ω resistance standard which the calibrated value is known from QHR standards maintained by other countries. The difference between them is agreed well within measurement uncertainty. It is thus considered that the properties of the device is estimated well and has good performance.

  • PDF