• Title/Summary/Keyword: Half link

Search Result 154, Processing Time 0.024 seconds

Practical Design and Implementation of a Power Factor Correction Valley-Fill Flyback Converter with Reduced DC Link Capacitor Volume (저감된 DC Link Capacitor 부피를 가지는 역률 개선 Valley-Fill Flyback 컨버터의 설계 및 구현)

  • Kim, Se-Min;Kang, Kyung-Soo;Kong, Sung-Jae;Yoo, Hye-Mi;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.277-284
    • /
    • 2017
  • For passive power factor correction, the valley fill circuit approach is attractive for low power applications because of low cost, high efficiency, and simple circuit design. However, to vouch for the product quality, two dc-link capacitors in the valley fill circuit should be selected to withstand the peak rectified ac input voltage. The common mode (CM) and differential mode (DM) choke should be used to suppress the electromagnetic interference (EMI) noise, thereby resulting in large size volume product. This paper presents the practical design and implementation of a valley fill flyback converter with reduced dc link capacitors and EMI magnetic volumes. By using the proposed over voltage protection circuit, dc-link capacitors in the valley fill circuit can be selected to withstand half the peak rectified ac input voltage, and the proposed CM/DM choke can be successfully adopted. The proposed circuit effectiveness is shown by simulation and experimentally verified by a 78W prototype.

A New Single-Phase Asymmetrical Cascaded Multilevel DC-Link Inverter

  • Ahmed, Mahrous;Hendawi, Essam
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1504-1512
    • /
    • 2016
  • This paper presents a new single-phase asymmetrical cascaded multilevel DC-link inverter. The proposed inverter comprises two stages. The main stage of the inverter consists of multiple similar cells, each of which is a half-bridge inverter consisting of two switches and a single DC source. All cells are connected in a cascaded manner with a fixed neutral point. The DC source values are not made equal to increase the performance of the inverter. The second circuit is a folded cascaded H-bridge circuit operating at a line frequency. One of the main advantages of this proposed topology is that it is a modular type and can thus be extended to high stages without changing the configuration of the main stage circuit. Two control schemes, namely, low switching with selective harmonic elimination and sinusoidal pulse width modulation, are employed to validate the proposed topology. The detailed approach of each control scheme and switching pulses are discussed in detail. A 150W prototype of the proposed system is implemented in the laboratory to verify the validity of the proposed topology.

DC Link Voltage Control for Single-Phase GTO PWM Converter (단상 GTO PWM 컨버터의 직류링크 전압제어)

  • Lee, O-Jae;Lee, Dong-Choon;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.117-120
    • /
    • 1993
  • In this paper, a novel DC link voltage control scheme for a single-phase PWM converter is proposed. The main idea of the control scheme is eliminating the effect of dc link voltage harmonics by using power balance of input side and output side. With the proposed strategy, faster transient response than that of conventional method using low-pass filter can be obtained. In addition, a half period current control, based at equal switching frequency, is proposed. The validity of the proposed scheme is verified by simulation results for GTO PWM converter system.

  • PDF

High-Efficiency Power Conditioning System for Grid-Connected Photovoltaic Modules

  • Choi, Woo-Young;Choi, Jae-Yeon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.561-567
    • /
    • 2011
  • This paper presents a high-efficiency power conditioning system (PCS) for grid-connected photovoltaic (PV) modules. The proposed PCS consists of a step-up DC-DC converter and a single-phase DC-AC inverter for the grid-connected PV modules. A soft-switching step-up DC-DC converter is proposed to generate a high DC-link voltage from the low PV module voltage with a high-efficiency. A DC-link voltage controller is presented for constant DC-link voltage regulation. A half-bridge inverter is used for the single-phase DC-AC inverter for grid connection. A grid current controller is suggested to supply PV electrical power to the power grid with a unity power factor. Experimental results are obtained from a 180 W grid-connected PV module system using the proposed PCS. The proposed PCS achieves a high power efficiency of 93.0 % with an unity power factor for a 60 Hz / 120 Vrms AC power grid.

Design of Bidirectional DC-DC Converter using Optimal Control DC-link for FCEV Drive (FCEV 구동을 위한 DC-link 최적 제어가 가능한 양방향 DC-DC 컨버터 설계)

  • Ko, An-Yeol;Kim, Do-Yun;Hwang, Jung-Pill;Won, Il-Kuen;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.102-103
    • /
    • 2013
  • 화석 연료의 고갈과 유가 급등으로 인해 자동차 업체에서는 친환경 차량 개발에 힘쓰고 있다. FCEV는 차량 구동용 전동기에 필요한 에너지를 연료전지를 통해 공급받게 된다. 하지만 연료전지의 특성상 연료전지와 배터리를 같이 사용하게 된다. 본 논문에서는 일반적인 Half-bridge 타입의 양방향 컨버터에 스위치를 추가하여 양방향 buck, boost가 가능한 컨버터를 설계하였다. 전동기 구동용 인버터는 전압형 인버터가 사용되는데 전압형 인버터에서 발생하는 출력은 데드타임과 스위칭 소자의 전압 강하에 의해 왜곡된 전압과 전류를 출력하게 되고 이러한 출력은 토크와 속도에 나쁜 영향을 끼치게 된다. 이러한 문제를 해결하기 위해 전동기의 속도에 따라 DC-link 전압을 가변하여 공급한다.

  • PDF

The High Power Factor Control of a Single Phase PWM Converter using a Reduced-Order Luenberger Observer (축소차원 Luenberger 관측기를 이용한 단상 PWM 컨버터의 고역률 제어)

  • Yang, Lee-U;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.529-535
    • /
    • 2000
  • In this paper, a current control system of a single phase PWM AC/DC converter using a reduced-order Luenberger observer without source voltage sensors is proposed. The sinusoidal input current and unity input power factor are realised based on the estimated source voltage performed by the reduced-order Luenberger observer using actual currents and DC link voltage. The poles of the reduced-order Luenberger observer are placed in the left half plane of s-plane by the pole-placement method in order to acquire the stability of the observer. The magnitude and the phase of the estimated source voltage are used to accomplish the unity power factor. The proposed method is implemented by DSP(Digital Signal Processor). Experimental Results verify that the reduced-order observer estimates the source voltage without the estimation error and the control system accomplishes the unity power factor, and constant DC link voltage.

  • PDF

A Study of Single-Stage PFC Electronic Ballast with Constant DC-Link Voltage (일정한 DC-Link 전압을 가진 단상 PFC 전자식 안정기에 관한 연구)

  • Kim Bong-kyu;Yoon Jae-han;Lee Hee-seung;Seo Jai-ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.594-599
    • /
    • 2001
  • A study of single-stage PFC electronic ballast with constant do-link voltage is presented in this paper. The proposed ballast is combined by two interleaved boost cells and a conventional half bridge dc/ac inverter, By exploiting the interleaving technique, the Input ripple current of the electronic ballast is reduced. Theoretical analysis and experimental results for two 45(W) fluorescent lamps are presented.

  • PDF

Novel SRM Drive Systems Using Variable DC-Link Voltage

  • Jang, Do-Hyun
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.285-293
    • /
    • 2011
  • This paper proposes two SRM driving systems using a variable dc-link voltage controlled by a single-phase inverter. Two SRM converter topologies of a half bridge type and a full bridge type are proposed according to the power circuits of an inverter. The phase current can be controlled by means of a PWM controller at the inverter, and the turn-on/off angle at the phase switches can be controlled by a position sensor at the converter in the drive system. The inverter acts as a peak-current limiter if the transient current exceeds its maximum value. SRMs using the proposed topologies maintain high efficiency due to energy regeneration after the turn-off of power switches. The operational modes of the proposed topologies are verified by simulation and experimental results.

Half-Duplex Relaying Strategy Suitable for a Relay with Mobility

  • Hwang, Inho;Lee, Jeong Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.108-125
    • /
    • 2015
  • We propose a new time-division half-duplex estimate-and-forward (EF) relaying strategy suitable for a relay with mobility. We reconfigure EF relaying to guarantee a strong relay-destination link which is required to achieve a high rate using EF relaying. Based on the reconfigured model, we optimize the relaying strategy to attain a high rate irrespective of the relay position with preserving the total transmit bandwidth and energy. The proposed relaying strategy achieves high communication reliability for any relay position, which differs from conventional EF and decode-and-forward (DF) relaying schemes.

Failure Prediction Monitoring of DC Electrolytic Capacitors in Half-bridge Boost Converter (단상 하프-브리지 부스트 컨버터에서 DC 전해 커패시터의 고장예측 모니터링)

  • Seo, Jang-Soo;Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • DC electrolytic capacitor is widely used in the power converter including PWM inverter, switching power supply and PFC Boost converter system because of its large capacitance, small size and low cost. In this paper, basic characteristics of DC electrolytic capacitor vs. frequency is presented and the real-time estimation scheme of ESR and capacitance based on the bandpass filtering is adopted to the single phase boost converter of uninterruptible power supply to diagnose its split dc-link capacitors. The feasibility of this real-time failure prediction monitoring system is verified by the computer simulation of the 5[kW] singe phase PFC half-bridge boost converter.