• Title/Summary/Keyword: Hadamard manifold

Search Result 9, Processing Time 0.013 seconds

Asymptotic dirichlet problem for schrodinger operator and rough isometry

  • Yoon, Jaihan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.103-114
    • /
    • 1997
  • The asymptotic Dirichlet problem for harmonic functions on a noncompact complete Riemannian manifold has a long history. It is to find the harmonic function satisfying the given Dirichlet boundary condition at infinity. By now, it is well understood [A, AS, Ch, S], when M is a Cartan-Hadamard manifold with sectional curvature $-b^2 \leq K_M \leq -a^2 < 0$. (By a Cartan-Hadamard manifold, we mean a complete simply connected manifold of non-positive sectional curvature.)

  • PDF

PARALLEL SHRINKING PROJECTION METHOD FOR FIXED POINT AND GENERALIZED EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLD

  • Hammed Anuoluwapo Abass;Olawale Kazeem Oyewole
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.421-436
    • /
    • 2024
  • In this article, we propose a shrinking projection algorithm for solving a finite family of generalized equilibrium problem which is also a fixed point of a nonexpansive mapping in the setting of Hadamard manifolds. Under some mild conditions, we prove that the sequence generated by the proposed algorithm converges to a common solution of a finite family of generalized equilibrium problem and fixed point problem of a nonexpansive mapping. Lastly, we present some numerical examples to illustrate the performance of our iterative method. Our results extends and improve many related results on generalized equilibrium problem from linear spaces to Hadamard manifolds. The result discuss in this article extends and complements many related results in the literature.

POLYNOMIAL GROWTH HARMONIC MAPS ON COMPLETE RIEMANNIAN MANIFOLDS

  • Lee, Yong-Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.521-540
    • /
    • 2004
  • In this paper, we give a sharp estimate on the cardinality of the set generating the convex hull containing the image of harmonic maps with polynomial growth rate on a certain class of manifolds into a Cartan-Hadamard manifold with sectional curvature bounded by two negative constants. We also describe the asymptotic behavior of harmonic maps on a complete Riemannian manifold into a regular ball in terms of massive subsets, in the case when the space of bounded harmonic functions on the manifold is finite dimensional.

ASYMPTOTIC DIRICHLET PROBLEM FOR HARMONIC MAPS ON NEGATIVELY CURVED MANIFOLDS

  • KIM SEOK WOO;LEE YONG HAH
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.543-553
    • /
    • 2005
  • In this paper, we prove the existence of nonconstant bounded harmonic maps on a Cartan-Hadamard manifold of pinched negative curvature by solving the asymptotic Dirichlet problem. To be precise, given any continuous data f on the boundary at infinity with image within a ball in the normal range, we prove that there exists a unique harmonic map from the manifold into the ball with boundary value f.

Complete open manifolds and horofunctions

  • Yim, Jin-Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.351-361
    • /
    • 1995
  • Let M be a complete open Riemannian manifold. When the sectional curvature $K_M$ of M is nonpositive, Gromov has defined, in his lectures [3], the ideal boundary of M, and used it to study the geometric structure of M. In a Hadamard manifold, a simply connected manifold with nonpositive sectional curvature, a point at infinity can be defined as an equivalence class of rays. He proved many interesting theorems using this definition of ideal boundary and the so-called Tit's metric on it. He also suggested a counterpart to this for nonnegative curvature case. This idea has been taken up by Kasue to study the structure of complete open manifolds with asympttically nonnegative curvature [14]. Motivated by these works, we will define an idela boundary of a general noncompact manifold M, and study its structure.

  • PDF

Stability and Constant Boundary-Value Problems of f-Harmonic Maps with Potential

  • Kacimi, Bouazza;Cherif, Ahmed Mohammed
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.559-571
    • /
    • 2018
  • In this paper, we give some results on the stability of f-harmonic maps with potential from or into spheres and any Riemannian manifold. We study the constant boundary-value problems of such maps defined on a specific Cartan-Hadamard manifolds, and obtain a Liouville-type theorem. It can also be applied to the static Landau-Lifshitz equations. We also prove a Liouville theorem for f-harmonic maps with finite f-energy or slowly divergent f-energy.

ASYMPTOTIC BEHAVIOR OF HARMONIC MAPS AND EXPONENTIALLY HARMONIC FUNCTIONS

  • Chi, Dong-Pyo;Choi, Gun-Don;Chang, Jeong-Wook
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.731-743
    • /
    • 2002
  • Let M be a Riemannian manifold with asymptotically non-negative curvature. We study the asymptotic behavior of the energy densities of a harmonic map and an exponentially harmonic function on M. We prove that the energy density of a bounded harmonic map vanishes at infinity when the target is a Cartan-Hadamard manifold. Also we prove that the energy density of a bounded exponentially harmonic function vanishes at infinity.

On Curvature-Adapted and Proper Complex Equifocal Sub-manifolds

  • Koike, Naoyuki
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.4
    • /
    • pp.509-536
    • /
    • 2010
  • In this paper, we investigate curvature-adapted and proper complex equifocal submanifolds in a symmetric space of non-compact type. The class of these submanifolds contains principal orbits of Hermann type actions as homogeneous examples and is included by that of curvature-adapted and isoparametric submanifolds with flat section. First we introduce the notion of a focal point of non-Euclidean type on the ideal boundary for a submanifold in a Hadamard manifold and give the equivalent condition for a curvature-adapted and complex equifocal submanifold to be proper complex equifocal in terms of this notion. Next we show that the complex Coxeter group associated with a curvature-adapted and proper complex equifocal submanifold is the same type group as one associated with a principal orbit of a Hermann type action and evaluate from above the number of distinct principal curvatures of the submanifold.