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ABSTRACT. In this paper, we give some results on the stability of f-harmonic maps with
potential from or into spheres and any Riemannian manifold. We study the constant
boundary-value problems of such maps defined on a specific Cartan-Hadamard manifolds,
and obtain a Liouville-type theorem. It can also be applied to the static Landau-Lifshitz
equations. We also prove a Liouville theorem for f-harmonic maps with finite f-energy or
slowly divergent f-energy.

1. Preliminaries and Notations

We give some definitions.
(1) Let (M, g) be a Riemannian manifold. The divergence of (0, p)-tensor o on M
is defined by

(1.1) (div™ @) (X1, .y Xpo1) = (VM) (65, X1, ooy Xpo1),

where VM is the Levi-Civita connection with respect to g, X1, ..., X,—1 € I'(TM),
and {e;} is an orthonormal frame. Given a smooth function A on M, the gradient
of A\ is defined by

(1.2) glgrad™ A, X) = X (1),

the Hessian of A is defined by

(1.3) (Hess™ \)(X,Y) = g(V¥ grad \,Y),
where X,Y € I'(TM), the Laplacian of A is defined by
(1.4) AM()) = trace, Hess™ )\,
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(see [11]).

(2) Let ¢ : (M, g) = (N, h) be a smooth map between two Riemannian manifolds,
7(¢) the tension field of ¢ (see [1, 2, 6]), f a smooth positive function on M, and
let H be a smooth function on N, the (f, H)-tension field of ¢ is given by

(1.5) 70 (p) = () + dp(grad™ f) + (grad™ H) o ¢,

where grad (resp. grad”) denotes the gradient operator with respect to g (resp.
h). Then ¢ is called f-harmonic with potential H if the (f, H)-tension field van-
ishes, i.e. 7 m(p) = 0 (for more details on the concept of f-harmonic maps with
potential H see [7]). The notion of f-harmonic with potential H is a generalization
of harmonic maps with potential H if f = 1, f-harmonic maps if H = 0 and the
usual harmonic maps if f =1 and H = 0. We define the index form for f-harmonic
maps with potential H by

(1.6) IﬁH(v,w) = /M h(J}",H(v),w)vM,
for all v,w € I'(¢~'TN), where

Jig) = —ftrace, RN (v,dp)dp — trace, V¥ fV¥v
(17) ~(Vi grad™ H) o ¢,

RY is the curvature tensor of (N, h), V¥ is the Levi-Civita connection of (N, h), V¥
denote the pull-back connection on ¢ 'TN, and v is the volume form of (M, g)
(see [1, 11]). If  be a f-harmonic map with potential H and for any vector field v
along ¢, the index form satisfies IﬁH(v, v) > 0, then @ is called a stable f-harmonic
map with potential H. Note that, the definition of stable f-harmonic maps with
potential H is a generalization of stable harmonic maps if f =1 on M and H =0
on N (see [4, 16]).

For the smooth map ¢ : (M, g) — (N, h), S. Ouakkas et al. introduced in [12]
the f-stress energy tensor Sy of ¢ associated to the f-energy functional

(18) Ey(p) = /M es(p)0",

is given by
Stle) =es(p)g — fe"h,
1

where ef(p) = §f|dgo\2 is the f-energy density of ¢. For any vector field X on M

(see [12]), we have

(1.9) div™ S () (X) = ~h(7¢(p), dp(X)) + %X(f)\d<p|2,

where 7;(¢) = f7(p) + dp(grad™ f). If ¢ is a f-harmonic map with potential H,
it follows that

(110) @™ Sy(p)(X) = h((grad™ H) o, dp(X)) + 3 X(/)ldgl.
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2. Stable f-harmonic Maps with Potential on Sphere

Theorem 2.1. Let ¢ be a stable f-harmonic map with potential H from sphere
(S™, g) (n > 2) to Riemannian manifold (N, h), where f is a smooth positive func-
tion on S™ satisfying tracey h((Vdp)(-, grad®” f),de(-)) > 0, and H is a smooth
function on N. Then,  is constant.

Proof. Choose a normal orthonormal frame {e;} at point zo in S”. Set
Az) =< a, & >gnt1,
for all z € S”, where o € R"*! and let v = gradgn A. Note that
v=<a,e; Sgat1 e, Vv =—\X, for all X € T(TS"),
trace, (V5" )%v = VET VE?U — VSVHS;TLQU = —v,

where V5" is the Levi-Civita connection on S™ with respect to the standard metric
g of the sphere (see [16]). At point xg, we have

(2.1) Ve fVEde(v) =V?

[ AVAZ
grads™ fdQD(U) + fveiveidsp(v)a

the first term of (2.1) is given by

Vfd(p(gradsn )+ akp([gradSn 1))
= Vidp(grad” f)+ dp(VE, jon 1)
(2:2) ~dp(VS" grad® f),

Vgradsn fdcp(v)

the seconde term of (2.1) is given by

INEVEdp(v) = [VEVEde(e) + [VEdp([ei v])
= fRN(dp(e:), dp(v))dip(es) + FVEVE dp(e)
(2.3) +fdiler, [es,vl]) + 2V, doles),
from the definition of tension field, we get
fVEVEdp(v) = —fRN(dp(v),dp(e;))dp(e;) + FVET(0)

+IVEdp(VE e;) + fdp(VE VE v)
—fdo(VE VY e) + 2f Y dip(er)

= —fRN(dp(v),dp(e;))dple;) + VEfr(p) — v(f)T(p)
+IVEdp(VE e;) + fdp(VE VE v)

(2.4) —fdp(VE VS e)) + 2fVE dp(e;),

lei,v]
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by equations (2.1), (2.2), (2.4), and the f-harmonicity with potential H condition
of ¢, we have

VESVEdp(v) = dp(V gon pv) = dp(V5 grad™ f)

— RN (dp(v), dp(ei))dp(e;)
~V{(grad™ H) o p — v(f)7(¢)
+Fdp(V5 Ve er) + fdp(VE Ve v)
(2.5) —fdo(VE VY €i) + 2f Vs dp(e:),
by the definition of Ricci tensor, we get
VEfVEdp(v) = dp(V, e 0) = dp(V grad™ f)
— RN (dp(v), dp(e:)dp(e:) — V5 (grad™ H) o p
—o(f)7(p) + fdp(Ricci® v) + fdp(trace(VS")?v)
(2.6) +2fvgsévdgo(ei),

from the property V%;v = —)X, we obtain

Ve fVedp(v) = —Mp(grad® f) —dp(V5 grad® f)

— RN (dg(v), d(e;))dip(e;)
~V¥(grad” H) o ¢

—o(f)7(p) + fdp(Ricci®” v)

(2.7) +fdo(trace(VE")20) — 20 f7 ().
From the definition of Jacobi operator (1.7) and equation (2.7) we have
T (de(v)) = Adp(grad™ f) +dp(V5 grad® f) +o(f)r(¢)
(2.8) —fd(p(RicciSn v) — fdp(trace(VE")20) + 2Xf7 (),
since trace,(VS" )20 = —v and Ricci® v = (n — 1)v (see [1, 16]), we conclude
h(JL(dp(v)),dp(v)) = Ah(dp(grad®” f),dp(v))

+h(dp(V grad®” f),dp(v))
+o(f)R(T(p), dp(v))
—(n —2) fh(dp(v), dp(v))

(2.9) +2Afh(7(p), dp(v)),
by (2.9) and the f-harmonicity with potential H condition of ¢, it follows that
traceq h(JL (dp(v)). do(v)) = h(dp(Ve] grad™ f),dg(e;)

(2.10) +h(7(), dp(grad™ f)) — (n — 2) fldi|?,
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note that

h(r(p),dp(grad™ f)) = h(VEdp(e;),dp(grad” f))
= div®" 5 — h(de(e;), Vfidso(gradsn ),

with 7(X) = h(dg(X), de(grad®” f), VX € T(TS"). We obtain

traceq A(JL(dp(v)),dp(v)) = —h((Vdp)(e;,grad™ f),dp(e;))
(2.11) +div" - (n - 2) fldg|?,

since h((Vdy)(e;, grad®” f), dp(e;)) > 0, from the stable f-harmonic with potential
H condition, and equation (2.11), we get

0 < trace, I} (dp(v), dp(v))  + / h(Vdg)(e;, grad®” f), do(e;))o°"

n

= —(n-2) [ fldg|*"" <o.
Sn

Consequently, |dp| = 0, that is ¢ is constant, because n > 2. O
If f=1on S", we get the following result:

Corollary 2.2.([14]) Any stable harmonic map ¢ from sphere S™ (n > 2) to Rie-
mannian manifold (N, h) is constant.

Corollary 2.3.([3]) Any stable harmonic map with potential from sphere S™ (n > 2)
to Riemannian manifold (N, h) is constant.

Using the similar technique we have:

Theorem 2.4. Let (M, g) be a compact Riemannian manifold, and ¢ : M — S"
a stable f-harmonic map with potential H, where f is a smooth positive function
on M, and H is a smooth function on S™ satisfying (AS"H) o @ > 0. Then, ¢ is
constant.

Proof. Choose a normal orthonormal frame {e;} at point z¢ in M. When the same
data of previous proof, we have

(212) VEFVE (o) = Vo (0o g) + [VEVE (o),
the first term of (2.12) is given by

(2.13) VE aant (V0 0) = =(Xo p)dp(grad™ f),

the seconde term of (2.12) is given by

fVEVE(vop) = —fVZ(Aop)dp(e)
(2.14) = —fdp(grad” (Ao ) — (Ao ) fr(y),
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by the definition of gradient operator, we get
(2.15) —fdp(grad™ (Ao p)) = —f < dp(es), v o ¢ > diles),
substituting the formulas (2.13), (2.14), (2.15) into (2.12) gives

VEfVE(voyp) = —(Aog)dp(grad™ f) — f < dp(e;),vop > dp(e;)
(2.16) —(Aop)fr(v),

from the f-harmonicity with potential H condition of ¢, and equation (2.16), we
have
<VEIVE(wop)vop> = —f<dp(e),vop><dp(e;),vop>
+(X o) < (grad®” H) o p,v0¢0 >,
(2.17)

since the sphere S™ has constant curvature, we obtain
< R (vo g, dp(e;)dp(es),v o @ >= fldpl> <vopvop>
(2.18) —f <dp(e;),vop ><dp(e;),vop>,
by the definition of Jacobi operator and equations (2.17), (2.18), we get
f — ) )
< Ji(wop)vop> = 2f <dp(e;),vop><dp(e),vop >
—fldp]? <vop,vop>
~(Aop) < (grad® H)op,v0p >
- < (V%Zw grad®” H) o p,v0p >,

so that

(219)  traceq < Jfy(vop),vop> = (2- n) fldp|? — (AS"H) o ¢,

and then

(2.20) traceq If y(vop,vop) = (2—n) /M fldop)?o™ — /M[(ASH) o oM

Hence Theorem 2.4 follows from (2.20) and the stable f-harmonicity with potential
H condition of ¢ with n > 2 and (AS"H) oy > 0. O

From Theorem 2.4, we deduce:

Corollary 2.5.([14]) Let (M, g) be a compact Riemannian manifold. When n > 2,
any stable harmonic map ¢ : M — S™ must be constant.

Corollary 2.6.([5]) Let (M,g) be a compact Riemannian manifold. When n > 2,
any stable f-harmonic map @ : M — S™ must be constant, where f is a smooth
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positive function on M.

3. Liouville Theorems

Let ¢ : (M,g) — (N, h) be a smooth map. For any fixed xg € M, by r(z) we
denote the distance function from xg to =, and by Bgr(z¢) the geodesic ball with
radius R and center xg. We say that the f-energy of ¢ is divergent slowly if there

exists a positive function v (t) with fgj % = 0o (Ry > 0), such that

o es()(@)

7% S ey 00(@) 5

(see [7]). The next lemma is very useful in the sequel.

Lemma 3.1. Let ¢ : (M™,g) — (N™ h) be a smooth map, D C M a compact
domain such that 0D is a smooth hypersurface in M. Let n denotes the unit normal
vector of 0D. Let X be any vector field in M with compact support. Then

(3.1)

/ er(p)g(X,n) =
oD

Here (,) denote the inner product on T*M @ T*M.
Proof. Choosing a local orthonormal frame field {e;} on M, and define VX (e;, e;) =
g(V¥e;, e;), then
div(es(0)X) = (Vi (ef(p)X), er)
= (Vi (er(9)X,e0) +er(0)g(Ve/ X, e)
VX er(o) +er()g(Ve X, e0),

Fh(dp(X), dp(n)) + / div™ $;()(X) + / (S4(¢). VX).
oD D D

and
VWerle) = VY (hldg(er). dp(en)))
S XUl + FA(V xdp)es,dio(e)

%X(f)\d¢|2 + fh((Ve,dp) X, dp(e;))

= LX(P)del? + 1V dp(X), fdp(er) — FR(dp(VYX), dples)

2
= %X(f)\dwl2 + Vel h(de(X), fdp(e:)) — hdp(X), (V. (fdp))e:)

—[h(dp(VEX), dp(es))

SX(Pldel? + div™ (Fh(dp(X), di(es))er) — hldp(X), 75())

—f{(VX, ¢ h).

565
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Hence we obtain

A (es(9)X) = SX(Idel + v (Fh(dp(X), dioles))er) — h(dp(X), 74(¢))

—HVX, 0 h) +es(9)9(Ve! X, e:)
= XUl + div (T (). dpled)es) = h(dp(X),77(9)
(3.2) +(S¢(¢), VX).

Now, for compact domain D in M with its smooth hypersurface 0D, taking local
orthonormal frame field {e;} on M along D, such that {e1,...,en—1} € T(TOD) ,
and e,, = n be the unit normal vector of dD. Since SuppX is compact, integrating
the formula (3.2) on D, by means of Green’s theorem and using (1.9), we have the
desired formula. O

Theorem 3.2. Let M be an m—dimensional complete, simply connected Rieman-
nian manifold with non-positive sectional curvature KM, m > 2. Assuming that
KM satisfies

(1) —a® < KM < =12, where a >0, b> 0 and (m;zl)b >a; or

(2) 11’;12 <KM <0, where 0 < A < W,

assume that ¢ is a f-harmonic map with potential H from Br(xg) to any Rieman-
nian manifold N with ¢ 9By (z0)= P, where P € N satisfies H(P) = max H(y),
. e

and X (f) > 0 such that X = r2-. Then ¢ must be constant in Bg(o).
Proof. First of all, from the definition of S¢(y), we obtain

(Sr(9), VX) = (er()g(eases) — fh(dp(ea), dp(es)))g(Ve, X, es)
(3.3) = es(p)9(Ve, X ea) = Fh(dp(ea), dp(es))g(VE X, ep).

Let eq = {es, %} be the orthonormal frame field of Bg(zg) and X = r%, then

0
A4 Mx = =
34) VeX = g
(3.5) Vé\fX = rvﬁf% = rHess™ (r)(es, er)er,

(3.6) divM X = g(V¥ X en) = 1 + r Hess™ () (e, ).
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Substituting (3.4), (3.5) and (3.6) into (3.3), we get

(S§(9), VX) = ep(p)(L+rHess™(r)(es, es)) — fh(dp(es), dp(er))g(VY X, er)

~ PRl o), (S )g(V X, £) = Fhldio( A5, diofer))

d
oV X, e0) — fhidple.) dol )
(@)1 +r Hoss™ (1) ey, 0)) — Fh(dp(es), dio(er)

(37 Hess™ (1) s, ) — FH(dp(0), dp( ).

)g(VYX,

Under the assumption (1) in Theorem 3.2, from Hessian comparison theorem (see
[8]) we have

(3.8) beoth(br)(g — dr @ dr) < Hess™ (r) < acoth(ar)(g — dr @ dr).
Therefore, (3.7) becomes

(Sf(9), VX) > ep()(1+ (m—1)(br)coth(br)) — f(ar)coth(ar)h(de(es), dp(es))
0 0

~ Fh(dg (). do(5-)
- f(mT‘lwrwoth(br) Dhldo(2), do(2))
+f<§ T (o) coth(br) — (ar) coth(ar)(de(e,), dio(cs)
> "2 (%)d () + 15 + reoth(r)(" b )
(3.9 hdples) (e,

Hence, when (mgil)b > a, it follows from (3.9)
(St(p), VX) = des (),

where § > 0.
Under the assumption (2), also by Hessian comparison theorem (see [8]) we have

Q

1(g —dr ® dr) < Hess™ (r) < =(g — dr @ dr),
,

=
where 8 =1+ 1(1+ 4A)2. By (3.7), it follows that

0 0

(57(6).VX) > mes(p) — fBh(dele). doles)) — Fh(do( ). dg( )
= P2 o), () + " hdgen), dptea))

Y
(=)
L
/\M
<
~—
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Then, under the two assumptions of Theorem 3.2 we obtain
(3.10) (St(0), VX) = des(e),

where ¢ > 0. Now choosing the geodesic polar coordinates (,r) in Bgr(zo) and a
local orthonormal frame field {eq, ..., €;p—1, %} on M. After applying D = Br(xy),
X = r% and n = % to (3.1), we get

0

0 .
B[ ete) = R flapPe [ av sy
dBR(x0) dBR(z0) r Br(zo) r

(3.11) +/B . )<sf(<p)7vx>.

Noting that ¢ is f-harmonic map with potential H, and using (1.10), we have

. 0 OHoyp) 1 of
divM S¢ (@) (r=) = / r——s——=+ */ r—=|dg|?,
ar BR(:E()) 87’. 2 BR(EO)

50, (3.11) becomes

0 O(H o )
R erlp) = R Flde(50)1” + / r———
dBR(xo) f(w) OBR(z0) | @(87“” Br(zo) or

1 0
(3.12) 3 [ oSher s [ (s vx),
BR(.’E()) r BR("EO)

Since ¢ is constant at OBgr(xo), by (3.10) and (3.12), we have

O(Hop) 1 af 5
(3.13) / r——= + 7/ r——|do|* + 5/ ef(p) < 0.
Br(zo) or 2 Br(zo) or Br(zo)

Denote J(6,r)dfdr the volume element of Bgr(zg) in polar coordinates around x.
Since 2 (rJ(6,7)) > 0 (see [3]), we obtain

/RTWJ(H,r)dT = RJ(O,R)H(P) — /RHOQU(HW)WdT
0 T 0 r
> RJ(6, R)H(P) — H(P) /R W‘“
0 T
= 0.
Therefore
dHop) _ FLOH Q) 1
/BR(%)T o) /BBR(%) </O 228 56, )de
(3.14) > 0.
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By (3.13) and (3.14) and X(f) > 0, we immediately conclude that ef(¢) = 0 in
Bgr(zp), namely, ¢ is constant in Bgr(zg), which completes the proof of Theorem
3.2. O

Remark 3.3. Consider the following static Landau-Lifshitz equation
(3.15) Ap + plde|*— < Ho,  >rs o+ Hy =0,

where |p(z)]? =1, 2 € Q C R™, Hy # 0 is a constant vector in R3. Then the
solution ¢ of (3.15) can be seen as a harmonic map with potential: Q — S? with
the potential H(y) =< Ho,y >gs, y € S? (see [3]). Moreover, Hong [9] asserted that
the static Landau-Lifshitz equation (3.15) with constant boundary-value problem
¢ loa= %, has only constant solution, if Q = B3, where B? denote the unit ball in
R3. On the other hand, if we choose M = R™(m > 2), N = S?, H(y) =< Hg,y >gs,
y € S%, then Theorem 3.2 for f = 1 leads to a conclusion for the static Landau-
Lifshitz equation, in particular, when m = 3, it is just the result of Hong. Theorem
3.2 also generalizes the result of [10] for the usual harmonic maps and Theorem 3
in [3] for the harmonic maps with potential.

For f-harmonic maps, we have

Theorem 3.4. Let M be as in Theorem 3.2. If ¢ is a f-harmonic map from M
whose f-energy is finite or divergent slowly. Then @ must be a constant map when
X(f) z0.

Proof. By setting D = Bg(x¢), X = r% and n = % in (3.1), we obtain

/ (divM Sp(9))(X) + / (54(¢), VX) =
Br(zo)

BR(wo)

0
R[ - o-r [ fletgP
B n (o) 9B (o) "

(3.16) < R/ er(e)-
OBR(zo)
According to (1.9), (3.10) and (3.16), for a f-harmonic map ¢, we get
1

R o)z o[ ey [ XDl
OBr (o) Br(zo) Br(zo)

(3.17) > 5[ e
Br(zo)

Y

Now suppose that ¢ is a nonconstant map, i.e. the f-energy density es(y) does not
vanish everywhere, so there exists Ry > 0 such that for R > Ry,

(3.18) / es() > Co,
BR(I())

569
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where Cj be a positive constant. So when R > Ry, we have from (3.17) and (3.18)

0C
(3.19) [ ez
OBR (o)

therefore, (3.19) will imply

B)> [ el = / R( / BR(zo)ef«o))drz /:( / BR(IO)ef«a))dr

R
>/ @dr = 5C01nR£.

7RO r 0

Let R — o0, this contradicts the assumption of the finite f-energy, then ¢ is
constant. If the f-energy of ¢ divergent slowly, therefore (3.19) leads to

r esflp) _ [T dr
A s o) (@) / 50 /aBmff(@)
< dr
500/0 ()
< dr
= ‘500/% e

Which is in contradiction with f-energy of ¢ being slowly divergent. So ¢ must be
a constant map. d

Y

Remark 3.5. When f = 1, it is clear that Theorem 3.4 recovers the results due
to Sealey [13] and Xin [16] as special cases. If the manifold M in the Theorems
3.2 and 3.4 satisfies —a? < KM < 0 and Ric™ < —b? < 0 with b > 2a, then this
two theorems remain true. Note that this kind of manifolds includes the bounded
symmetric domains and complex hyperbolic spaces see ([15]).
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