• 제목/요약/키워드: Hadamard Product

검색결과 81건 처리시간 0.029초

FEKETE-SZEGÖ INEQUALITIES FOR A NEW GENERAL SUBCLASS OF ANALYTIC FUNCTIONS INVOLVING THE (p, q)-DERIVATIVE OPERATOR

  • Bulut, Serap
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.723-734
    • /
    • 2022
  • In this work, we introduce a new subclass of analytic functions of complex order involving the (p, q)-derivative operator defined in the open unit disc. For this class, several Fekete-Szegö type coefficient inequalities are derived. We obtain the results of Srivastava et al. [22] as consequences of the main theorem in this study.

SUBORDINATION RESULTS FOR CERTAIN CLASSES OF MULTIVALENTLY ANALYTIC FUNCTIONS WITH A CONVOLUTION STRUCTURE

  • Prajapat, J.K.;Raina, R.K.
    • East Asian mathematical journal
    • /
    • 제25권2호
    • /
    • pp.127-140
    • /
    • 2009
  • In this paper a general class of analytic functions involving a convolution structure is introduced. Among the results investigated are the various results depicting useful properties and characteristics of this function class by employing the techniques of differential subordination. Relevances of the main results with some known results are also mentioned briefly.

A NEW SUBCLASS OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH BESSEL FUNCTIONS

  • SUJATHA;B. VENKATESWARLU;P. THIRUPATHI REDDY;S. SRIDEVI
    • Journal of applied mathematics & informatics
    • /
    • 제41권5호
    • /
    • pp.907-921
    • /
    • 2023
  • In this article, we are presenting and examining a subclass of Meromorphic univalent functions as stated by the Bessel function. We get disparities in terms of coefficients, properties of distortion, closure theorems, Hadamard product. Finally, for the class Σ*(℘, ℓ, ℏ, τ, c), we obtain integral transformations.

SUBORDINATIONS BY CERTAIN UNIVALENT FUNCTIONS ASSOCIATED WITH A FAMILY OF LINEAR OPERATORS

  • SEON HYE AN;G. MURUGUSUNDARAMOORTHY;NAK EUN CHO
    • Journal of applied mathematics & informatics
    • /
    • 제41권5호
    • /
    • pp.1103-1114
    • /
    • 2023
  • The aim of the present paper is to obtain some mapping properties of subordinations by certain univalent functions in the open unit disk associated with a family of linear operators. Moreover, we also consider some applications for integral operators.

Semi-deterministic Sparse Matrix for Low Complexity Compressive Sampling

  • Quan, Lei;Xiao, Song;Xue, Xiao;Lu, Cunbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2468-2483
    • /
    • 2017
  • The construction of completely random sensing matrices of Compressive Sensing requires a large number of random numbers while that of deterministic sensing operators often needs complex mathematical operations. Thus both of them have difficulty in acquiring large signals efficiently. This paper focuses on the enhancement of the practicability of the structurally random matrices and proposes a semi-deterministic sensing matrix called Partial Kronecker product of Identity and Hadamard (PKIH) matrix. The proposed matrix can be viewed as a sub matrix of a well-structured, sparse, and orthogonal matrix. Only the row index is selected at random and the positions of the entries of each row are determined by a deterministic sequence. Therefore, the PKIH significantly decreases the requirement of random numbers, which has a complex generating algorithm, in matrix construction and further reduces the complexity of sampling. Besides, in order to process large signals, the corresponding fast sampling algorithm is developed, which can be easily parallelized and realized in hardware. Simulation results illustrate that the proposed sensing matrix maintains almost the same performance but with at least 50% less random numbers comparing with the popular sampling matrices. Meanwhile, it saved roughly 15%-35% processing time in comparison to that of the SRM matrices.

SOME PROPERTIES OF CERTAIN CLASSES OF FUNCTIONS WITH BOUNDED RADIUS ROTATIONS

  • NOOR, KHALIDA INAYAT
    • 호남수학학술지
    • /
    • 제19권1호
    • /
    • pp.97-105
    • /
    • 1997
  • Let $R_k({\alpha})$, $0{\leq}{\alpha}<1$, $k{\geq}2$ denote certain subclasses of analytic functions in the unit disc E with bounded radius rotation. A function f, analytic in E and given by $f(z)=z+{\sum_{m=2}^{\infty}}a_m{z^m}$, is said to be in the family $R_k(n,{\alpha})n{\in}N_o=\{0,1,2,{\cdots}\}$ and * denotes the Hadamard product. The classes $R_k(n,{\alpha})$ are investigated and same properties are given. It is shown that $R_k(n+1,{\alpha}){\subset}R_k(n,{\alpha})$ for each n. Some integral operators defined on $R_k(n,{\alpha})$ are also studied.

  • PDF

SOME APPLICATIONS AND PROPERTIES OF GENERALIZED FRACTIONAL CALCULUS OPERATORS TO A SUBCLASS OF ANALYTIC AND MULTIVALENT FUNCTIONS

  • Lee, S.K.;Khairnar, S.M.;More, Meena
    • Korean Journal of Mathematics
    • /
    • 제17권2호
    • /
    • pp.127-145
    • /
    • 2009
  • In this paper we introduce a new subclass $K_{\mu}^{\lambda},{\phi},{\eta}(n;{\rho};{\alpha})$ of analytic and multivalent functions with negative coefficients using fractional calculus operators. Connections to the well known and some new subclasses are discussed. A necessary and sufficient condition for a function to be in $K_{\mu}^{\lambda},{\phi},{\eta}(n;{\rho};{\alpha})$ is obtained. Several distortion inequalities involving fractional integral and fractional derivative operators are also presented. We also give results for radius of starlikeness, convexity and close-to-convexity and inclusion property for functions in the subclass. Modified Hadamard product, application of class preserving integral operator and other interesting properties are also discussed.

  • PDF

COMPLETION FOR TIGHT SIGN-CENTRAL MATRICES

  • Cho, Myung-Sook;Hwang, Suk-Geun
    • 대한수학회보
    • /
    • 제43권2호
    • /
    • pp.343-352
    • /
    • 2006
  • A real matrix A is called a sign-central matrix if for, every matrix $\tilde{A}$ with the same sign pattern as A, the convex hull of columns of $\tilde{A}$ contains the zero vector. A sign-central matrix A is called a tight sign-central matrix if the Hadamard (entrywise) product of any two columns of A contains a negative component. A real vector x = $(x_1,{\ldots},x_n)^T$ is called stable if $\|x_1\|{\leq}\|x_2\|{\leq}{\cdots}{\leq}\|x_n\|$. A tight sign-central matrix is called a $tight^*$ sign-central matrix if each of its columns is stable. In this paper, for a matrix B, we characterize those matrices C such that [B, C] is tight ($tight^*$) sign-central. We also construct the matrix C with smallest number of columns among all matrices C such that [B, C] is $tight^*$ sign-central.

Disturbance analysis of hydropower station vertical vibration dynamic characteristics: the effect of dual disturbances

  • Zhi, Baoping;Ma, Zhenyue
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.297-309
    • /
    • 2015
  • The purpose of this work is to analyze the effect of structure parameter disturbance on the dynamic characteristics of a hydropower station powerhouse. A vibration model with a head-cover system is established, and then the general disturbance problem analysis methods are discussed. Two new formulae based on two types of disturbances are developed from existing methods. The correctness and feasibility of these two formulae are validated by analyzing the hydropower station powerhouse vibration model. The appropriate calculation method for disturbance of the hydropower station powerhouse vibration dynamic characteristics is derived.

Pascal Distribution Series Connected with Certain Subclasses of Univalent Functions

  • El-Deeb, Sheeza M.;Bulboaca, Teodor;Dziok, Jacek
    • Kyungpook Mathematical Journal
    • /
    • 제59권2호
    • /
    • pp.301-314
    • /
    • 2019
  • The aim of this article is to make a connection between the Pascal distribution series and some subclasses of normalized analytic functions whose coefficients are probabilities of the Pascal distribution. For these functions, for linear combinations of these functions and their derivatives, for operators defined by convolution products, and for the Alexander-type integral operator, we find simple sufficient conditions such that these mapping belong to a general class of functions defined and studied by Goodman, Rønning, and Bharati et al.