
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May. 2017                                            2468 
Copyright ⓒ2017 KSII 

Semi-deterministic Sparse Matrix for Low 
Complexity Compressive Sampling 

 
Lei Quan1, Song Xiao2*, Xiao Xue2 and Cunbo Lu2 

1 School of Aerospace Science and Technology, Xidian University 
Xi’an, China 

[e-mail: quanlei@xidian.edu.cn] 
2 ISN National Key Laboratory, Xidian University 

Xi’an, China 
 [e-mail: xiaosong@mail.xidian.edu.cn] 

*Corresponding author: Song Xiao 
 

Received August 27, 2016; revised November 7, 2016; accepted February 3, 2017; 
published May 31, 2017 

 

 
Abstract 

 
The construction of completely random sensing matrices of Compressive Sensing requires a 
large number of random numbers while that of deterministic sensing operators often needs 
complex mathematical operations. Thus both of them have difficulty in acquiring large signals 
efficiently. This paper focuses on the enhancement of the practicability of the structurally 
random matrices and proposes a semi-deterministic sensing matrix called Partial Kronecker 
product of Identity and Hadamard (PKIH) matrix. The proposed matrix can be viewed as a sub 
matrix of a well-structured, sparse, and orthogonal matrix. Only the row index is selected at 
random and the positions of the entries of each row are determined by a deterministic sequence. 
Therefore, the PKIH significantly decreases the requirement of random numbers, which has a 
complex generating algorithm, in matrix construction and further reduces the complexity of 
sampling. Besides, in order to process large signals, the corresponding fast sampling algorithm 
is developed, which can be easily parallelized and realized in hardware. Simulation results 
illustrate that the proposed sensing matrix maintains almost the same performance but with at 
least 50% less random numbers comparing with the popular sampling matrices. Meanwhile, it 
saved roughly 15%-35% processing time in comparison to that of the SRM matrices. 
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1. Introduction 

The design of the sensing matrix ∈Φ ℝM×N ( )M N<<  is one of the three key problems of 
Compressive Sensing [1] (or Compressed Sampling, CS), since the sensing matrix determines 
whether the original signal ∈x ℝN could be recovered from the incomplete projections ∈y ℝN 
by =y Φx , where x  is a k -sparse vector who has only k  nonzero entries. Besides, the 
structure and the values of Φ  greatly affect the complexity of the applications of CS. 
Therefore, a “good” sensing matrix may have good sensing performance and low complexity 
simultaneously. In detail, the sensing matrix is able to recover any k -sparse signal when m  is 
on the order of ( )logO k N . Meanwhile, Φ  should be easily stored and proceeded, which is 
more sensitive (very important) in practical applications. It has been proved that Gaussian 
random matrices [4], [6] and Bernoulli random matrices [6] have good performance. However, 
they inherently have drawbacks like huge storage requirement and high computational 
complexity.  

To overcome these two drawbacks under the promise of good performance, various sensing 
matrices have been investigated. Taking advantages of fast computing methods like Fast 
Fourier Transform or Fast Hadamard Transform, the partial Fourier matrix [7] and the partial 
Hadamard matrix [7], [8] have made it possible to apply in practice. But they are random, 
dense and complex valued, thus are still hard to implement. On the other hand, aims to remove 
the randomness and makes it easier for hardware implementation, deterministic matrices [8], 
[9] are studied. Making uses of the popular codes of channel coding and sequences with 
certain characteristics, deterministic matrices usually have good sensing performance. 
Unfortunately, deterministic matrices always need a lot of complex mathematical operations 
during construction thus have difficulty in acquiring large signals. Besieds, because of dense 
matrix is not suitable for processing, the sparse version of random and deterministic sensing 
matrices have also been investigated [10], [11]. They are helpful of reducing processing 
complexity but can not overcome strutral or design shortage. 

In addition, structured compressive sensing matrices like Toeplitz and Circulant matrices 
which arise from realistic scenarios are investigated [12]-[17]. These matrices are highly 
structured, thus can be stored efficiently. Among them, the Structured Random Matrix [23] 
(SRM) offers high sparsity, low complexity and fast computation properties and is universal 
for a variety of sparse signals. But it still uses lot random numbers during matrix construction, 
which makes it hard to implement because the random numbers generation is hard and time 
consuming.  

Nevertheless, compared with the completely random matrices, the structured matrices 
[18]-[23] imply that, in a scene, well designed matrix structure and randomness of matrix 
entries are replaceable in terms of the sensing performance.  

With this idea, under promise of little performance loss, we focus on to design a 
well-structured sensing matrix to further reduce the implementation complexity of sensing 
matrix by decreasing the randomness and lowering the sensing complexity of the matrix. 

In this paper, we propose a semi-deterministic sparse matrix called Partial Kronecker 
product of Identity and Hadamard (PKIH) matrix. We fix the sampling positions using a 
deterministic sequence and choose rows from the core matrix uniformly at random to generate 
measurements. And the core matrix is designed as an orthogonal matrix consisting of a 
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two-layer structure. The outer layer is designed as block diagonal in order to reduce the 
sampling delay and memory consuming, and the inner layer is designed as the Kronecker 
product of the Hadamard and the Identity matrix to seek for simplicity and orthogonal 
property.  

The proposed PKIH matrix needs few random numbers and provides properties of sparse, 
highly structured and fast sampling. Besides, it can be easily implemented on hardware. The 
PKIH matrix offers comparable sensing performance to the optimal sensing matrices with 
much less random numbers. Moreover, the corresponding fast sampling algorithm for the 
acquirement of large signals is proposed, which reduces the computational complexity of the 
sampling procedure.  

The remainder of this paper is organized as follows: In section II, we briefly introduce the 
background of compressive sensing and some notations. In section III, the main concept of 
PKIH, including matrix structure, matrix property, and the fast sensing procedure are 
described in detail. Section IV gives several experiments to evaluate the performance and the 
complexity of PKIH. Finally, section V comes to the conclusion.  
 

2. Preliminaries and Background 

2.1 Preliminaries and Notations 
We use boldface letters to denote vectors (lowercase) and matrices (capital), and calligraphy 
letters to denote sets. The set of { }1, 2, , N  is denoted by [ ]N . The entry in the i-th row and 
j-th column of a matrix A is denoted as ija . The matrix A  of size N N×  is denoted as NA  

and NAX  denotes the sub matrix of NA  consisting of the rows indexed by set [ ]N⊂X . p⋅  

denotes the p  norm. ( )T⋅  denotes the matrix transpose and X  denotes the cardinality of set 

X .The Kronecker product of matrices A∈ℝI×J and B∈ℝK×L is denoted by A B⊗ . The result 
is a matrix of size ( ) ( )I K J L⋅ × ⋅  defined by 
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The transpose property and the mixed-product property of it can be expressed as 
 

 ( )
( )( ) ( ) ( )

T T T⊗ = ⊗

⊗ ⊗ = ⊗

A B A B

A B C D AC BD
  (2) 

 

2.2 Background of Compressive Sensing 
Compressive sensing provides a new paradigm for signal acquisition and processing. The 
theory of CS has established that a sparse or compressible signal can be recovered with high 
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probability from a few measurements, which is far smaller than the length of the original 
signal. 

Consider an n-dimensional signal vector ( )1, T
Nx x= …x . The vector is k-sparse if it has at 

most ( )k k N<<  large coefficients while the remaining coefficients are small or zero. 

Furthermore, suppose that an n-dimensional signal vector ( )1, , N
Tf f= …f  can be represented 

as 
1

n

i i
i

x
=

= =∑f ψ Ψx  in some domain ( )1, , N= …Ψ ψ ψ , it is said that f  is compressible.  

The theory of CS states that, with high probability, the k-sparse vector x  (and further, f ) 
can be recovered from ( )M M N<<  linear combinations of measurements. It can be obtained 
as follows, given measurement matrix ∈Φ ℝM×N and the observation vector ∈y ℝM with 
 
 = =y Φf ΦΨx   (3) 
 

Recoverment of ∈x ℝ N or f  from y  can be achieved through solving the NP-hard 

0 -minimization problem  

 
 ( )

0
0 ,min . .P s t = =x y Φf f Ψx



  (4) 

 
Fortunately, the NP-hard problem 0P  is equivalent to the 1 -minimization problem 1P :  

 
 ( )

1
1 ,min . .P s t = =x y Φf f Ψx



  (5) 

 
when the so-called sensing matrix = ∈A ΦΨ ℝM×N satisfies the Restricted Isometry Property 
(RIP) or in most practical scenarios, has low mutual coherence. And problem 1P  can be solved 
by convex optimization within an acceptable period of time. 

It has been proved that if and only if Φ  satisfies the Null Space Property [2], the problem 
0P  and 1P  are equivalent. However, the null space property is usually somewhat difficult to 

show directly, instead, RIP [3], [4] is introduced by Candès and the method of analysing 
mutual coherence [5] of matrices is developed by Donoho to estimate the performance of 
sensing matrices.  

3. Partial Kronecker Product of Identity and Hadamard Matrix 

3.1 The Structure of PKIH 
Before we show the definition of the PKIH, we firstly introduce the Kronecker product of 
Identity and Hadamard matrix (KIH). And the definitions of KIH and PKIH are as follows: 

Definition 1: Let U ∈ℝN×N and , , ,d p q i∈ℕ, and denote dH  is a d d×  Hadamard matrix, 
the KIH matrix is defined as 
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 ( ) , 4p d q d i= ⊗ ⊗ =U I H I   (6) 
 

PKIH is then defined as: 
Definition 2: Let N ∈IX ℝM×N and λ∈ℕ, then the PKIH matrix ∈Φ ℝM×N is defined as 

 
 N N N=Φ I U IU Z   (7) 
 
where the subset [ ]N⊂X  is selected uniformly at random among all subsets of [ ]N  of 

cardinality M=X , [ ]( )mod 1N Nλ= ⋅ +Z  defines a deterministic permutation of 

[ ] [ ]N N→ . In matrix representation, NIX  is simply a random subset of M  rows of an N N×  
identity matrix and NIZ  is a deterministic permutation matrix. In this paper, NIX  is called 
random down sampling matrix. 

According to the structure of PKIH, the matrix can be determined uniquely by p, d, q and M 
random variables uniformly selected from [1, N]. The number of random variables needed is 
equal to that of measurements to be generated. The value of all the non-zero entries is in {0, 
±1}, namely it is a ternary valued matrix. Moreover, the sparsity of the sensing matrix is d/N 
and every d operations or flops generate a measurement since there are d non-zero entries in 
each row of the matrix. During the sampling procedure, every signal point is sampled about p 
times. And it takes d operations to generate one measurement, therefore, it takes roughly m = 
dM operation flops to acquire a N points signal by rate M. Thus the matrix is sparse, ternary 
valued, highly structured, and uses few random numbers. The scatter plot of the matrix is 
plotted in Fig. 1 to show the structure of PKIH. And the properties of the PKIH are showed by 
following lemmas in detail. 
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Fig. 1. Scatter plots of KIH (left) and PKIH (right) with p=8, d=4, q=7 and λ =3. The sparsity of the 

matrix is 0.0179. 
 

Lemma 1: Let ∈U ℝN×N be a KIH matrix, then U  is an orthogonal matrix.  
Proof:  By the transpose property and the mixed-product property of Kronecker product, we 

have, 
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which indicates that U  is an orthogonal matrix. 

Lemma 2: Let ∈Φ ℝM×N be a PKIH matrix of size M N× , then it requires M  random 
numbers to construct a Φ .  

Proof: According to Definition 1, any KIH matrix U  can be uniquely determined by d , p  
and q , namely NU  is deterministic thus random numbers is not needed during the matrix 
construction. 

By Definition 2, the subset [ ]N⊂X  is selected uniformly at random among all subsets of 

[ ]N  of cardinality M=X . Therefore, one need M  random numbers to determine the index 
set X  and further, NIX . On the other hand, Z  can be uniquely determined by the parameter λ  
thus it does not need random numbers during the construction of NIZ . 

In summary, N N=Φ I UU  can be determined by d , p , q , λ  and X . It requires 
0 0 M+ + =X  random numbers to construct a Φ . 

Lemma 3: Let ∈Φ ℝM×N be a PKIH matrix of size M N× , and let d  be the rank of 

hadamard matrix used to construct Φ , then the sparsity of Φ  is d
N .  

Proof: By the definition of KIH, ( )N p d q= ⊗ ⊗U I H I , there are 2pd q dN=  nonzero 

entries in NU  and there are d  nonzero entries in each row of NU . For PKIH, 

N N N N N= =Φ I U I U IU Z U Z , where NUU  actually selects rows of NU  indexed by set X . And NIZ  is 
a permutation matrix which does not change the sparsity of NUU . Therefore, the sparsity of Φ  

is d d
MN N

=
X .  

The lemma also implies the high efficiency of the PKIH. It takes only d  operations or flops 
to generate one measurement.  

3.2 Incoherence Analysis 
By the definition of mutual coherence [5], the mutual coherence of an orthonormal matrix 
∈Φ ℝN×N and another orthonormal matrix ∈Ψ ℝN×N is  

 
 

1 ,
( , ) max ,i ji j N

m φ j
≤ ≤

=Φ Ψ   (9) 

 
where iφ  is the i-th row of Φ  and jj  is the j-th column of Ψ .  
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Furthermore, the Theorem 1.1 of [3] states that for an N N×  orthogonal matrix Λ , fix a 
subset T  of the signal domain, choose a subset S  of the measurement domain of size 

M=S , and choose a sign sequence z  on S  uniformly at random. For some fixed 

numerical constants C  and C′ , when ( ) ( )2 logM C Nµ δ≥ ⋅ ⋅ ⋅ΛT  and also 

( )2logM C N δ′≥ ⋅ , then with probability exceeding 1 δ− , every signal x  supported on T  

with signs matching z  can be recovered from =y Λ xS . And based on these results, the 
theorem of PKIH is the following. 

Theorem: Let C , C′  and δ  be some positive constant and let Ψ  be any orthogonal basis, 
then with probability at least 1 δ− , the matrix PKIH=Φ Φ Ψ  can recover any K-sparse signal 

exactly from =y Φx  by 1  minimization if the number of measurements log( )CK NM
N δ

≥  

and also ( )2logM C N δ′≥ .  

Proof: Let KIH=U Φ IZ  corresponds to PKIHΦ . In the proof, we will firstly prove that 
=Ω UΨ  is an orthogonal matrix and then the mutual coherence of U  and Ψ  is calculated. 

At last, by applying Theorem 1.1 in [3] to above results, we get the theorem proved.  
According to Lemma 1, KIHΦ  is an orthogonal matrix. Knowing that IZ  is a permutation 

matrix and Ψ  is an orthogonal basis, we have, 
 

 

( ) ( )
( )

TT
KIH KIH

TT T
KIH KIH

d

=

=

=

Ω Ω Φ I Ψ Φ I Ψ

Ψ I Φ Φ I Ψ

I

Z Z

Z Z   (10) 

 
where d  is the rank of the Hadamard matrix used to construct KIHΦ . Therefore, Ω  is an 
orthogonal matrix.  

Considering the mutual coherence of U  and Ψ , we have, 
 

 
,

, , ,1 11 0mod

( , ) max max
i j

N

i j j i j ik N i Nj ui k N

cd
N

λ

m m j j
≤ ≤ ≤ ≤

= ≠=

= ≤ =∑ ∑U Ψ   (11) 

 
where λ  is a positive integer and c  is some positive constant. For example, 2c =  when the 

basis is DCT basis, and c s=  when the basis is Wavelet basis, where s  is the width of the 
Wavelet subband.  

By Definition 2, 
 
 PKIH N N N= = = =Φ Φ Ψ I U Ψ U Ψ Ω

UUU     (12) 
 
where the subset NIX  is a random down sampling matrix thus Φ  can be viewed as a random 
down sampled partial matrix of orthogonal matrix Ω . Therefore, by introducing above results 
to Theorem 1.1 in [3] we have when, 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017                                         2475 

 

 ( )2
2

0 0( ) log( ) log( ) log( )
cd CKN N NM C C K
N N

µ ddd  ≥ ⋅ ⋅ Φ ⋅ = =T   (13) 

 
and also ( )2logM C N δ′≥ , the theorem holds. Where C , C′  and δ  are some positive 
constants. 

This bound is weak and the performance of the matrix behaves better than the theorem holds. 
As well known, the Gaussian dense matrix, whose entries are normally distributed, has near 
optimal performance. As a glimpse of the sensing performance of PKIH, we find that entries 
of ΦΨ  are asymptotically normally distributed. As a conjecture, we claim that the sensing 
performance of PKIH is close to the optimal one. It is firstly illustrated in Fig. 2, which depicts 
the histograms and the fitted curves from the normal distribution of entries of ΦΨ  using the 
‘histfit’ function of MATLAB, where Ψ  is the 512 512×  DCT matrix and Φ  is chosen as 
one of the instances of SRMG, SRML or PKIH matrix of size 256 512× . As clearly shown in 
the figure, the histogram of entries of SRMGΦ Ψ  matches the fitted curve of the normal 
distribution perfectly and that of PKIHΦ Ψ  matches well of its fitted curve except a spark at 
zero, which implies that the matrix contains more zeros. Meanwhile, the histogram of 

SRMLΦ Ψ  is reluctant to comply with the fitted curve of normal distribution with some burrs 
and a spark at zero. Among these curves, the histogram of SRMG model shows best agreement 
with its fitted curve of normal distribution while the histogram of SRML model shows the 
worst agreement with its fitted curve of normal distribution. This implies that the sensing 
performance of PKIH may be better than that of SRML and is close to that of SRMG. 
Corroborations of this conjecture are provided by simulation results in section 3. 
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Fig. 2. Histfit of entries of 256 512 DCT512×Φ Ψ  versus standard normal distribution. The models are 

SRM-G (left), SRM-L (middle) and PKIH with q=5, λ =3 (right). 
 

3.3 Fast sampling with PKIH 
For large signal acquiring, constructing a KIH matrix and subsampling are unsubstantial. 
According to the structure and the properties of PKIH, it is a highly sparse sign matrix which 
only has a few entries of { 1}± . The corresponding KIH matrix is highly structured and the 
permutation matrix is a deterministic matrix. Taking advantage of these natures, we proposed 
a fast sampling algorithm to implement the sampling procedure of PKIH in a real-time way. 
Besides, the sampling algorithm can easily be parallelized and distributed in practice.  

The sampling procedure using PKIH can be described as follows: 
Step 1: Initialize the random seed. Get the input variables of signal length N  , rank of 
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Hadamard matrix d , measurements number M  and other parameters including p , q  and λ . 

The average sampling count 
M Mr dq
N p

  = ⋅ =      
. 

Step 2: Construct a d d×  Sylvester-Hadamard matrix dH . Calculate dqH  by 
{ }1

dq d q= ⊗H H I , where { }1
qI  is the first row of qI . Arrange the signal vector x  by 

[ ]1 mod ,i i Nx x i Nλ+= ∈ . Read signal of length dq  into memory. 

Step 3: Let dqΘ = , randomly and uniformly select a number [ ]θ ∈ Θ  as row index and 
{ }
dq
qH  indicates the θ -th row of dqH . Let h  be the index vector of nonzero entries of { }

dq
qH  

and −h  be the index vector of negative entries of { }
dq
qH , let ( ) ( )− −= −x h x h , then 

( )m =∑x h  is the generated measurement. Repeat this step for r  times to get r  
measurements. 

Step 4: Load a new slice of signal of length dq  and return to step 3. Padding zeros when the 
signal length is not enough, and finish sampling when there’s no remain signal. 

During the sampling procedure, every signal point is sampled about M p    times. And it 
takes about d  operations to generate one measurement because there are only d  non-zero 
entries in every row of the sensing matrix, therefore, it takes roughly m dM=  operation flops 
to acquire a signal of length N  by rate M . The fast sampling method is memory efficient and 
can be easily parallelized. It needs a length of roughly ( )2d d q+  memories for any signal 

sampling. And this memory requirement can be optimized to roughly 2d dq+ . Note that the 
sampling process of PKIH occupies no multiplication/division operations thus results in easier 
hardware implementation and faster processing speed in practice.  

4. Simulations and Analysis 
Several simulations have been taken in order to evaluate the sensing performance and 
computational complexity of proposed matrix. All the evaluations were executed on 
MATLAB 2010b on a desktop with 3.0 GHz AMD X4 640 CPU and 4GB RAM. And the 
structurally random matrices with local model (SRML) and global model (SRMG) in [23], 
which are already of low complexity and have near optimal sensing performance, were taken 
into comparison.  

Table 1. Practical feature comparison 
Features PKIH SRMG SRML 
Sparsity d/N d/N d/N 

Required Random 
variables M M+N M+N 

Main operations ‘+’, ‘-’ ‘+’, ‘-’, ‘×’ ‘+’, ‘-’, ‘×’ 
Memory consuming Little more than dq Little more than N Little more than d 

Parallelization Yes After 
pre-randomization Yes 

 
Firstly, the complexity features of PKIH and SRM models are compared in Table 1. Both of 

them are very sparse, which lead to low computational complexity. But PKIH requires much 
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fewer random variables, low memory costs and no multiplication operations, which lead to 
easier hardware implementation and higher processing speed in practice. Note that based on 
the fact that the PKIH saves at least 50% of random variables than that of SRM. This brings 
improvement of computation and hardware implementation. 

4.1 Simulation With Sparse Signals 
In this section, the sensing performance of PKIH is evaluated and is compared with that of the 
completely random projection and also with that of the structurally random matrices in [23], 
which are already of low complexity. Then, the computational complexity of constructing a 
sensing matrix is evaluated by counting the CPU time.  

Simulation 1: In the first simulation, the input signal x  of length 512N =  is sparse in the 
DCT domain with =x Ψθ , where the sparsifying basis Ψ  is the 512 512×  IDCT matrix and 
the transform coefficient vector θ  has 30K =  nonzero entries whose magnitudes are 
Gaussian distributed and locations are at uniformly random. With the signal x , the 
measurement vectors of length M  (varies from 70 to 160) are generated by =y Φx , where 
Φ  can be PKIH matrices ( 5q = , 3λ = , PKIH(5,3)), SRMG, SRML, or completely Gaussian 
random matrices (GAU) [4]. In addition, the block sizes of the sub matrix of the former three 
models are set to 4. The OMP [24] algorithm is taken as recover strategy and the exact 
recovery means that the recovered signal x̂  and the original signal x  satisfy the condition of 

( )2 2
10 2 2

ˆ10log 50PSNR = − ≥x x x . Every experiment is repeated 10000 times and the 

probability of exact recovery is showed in Fig. 3. 
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Fig. 3. The probability of exact recovery of different sensing matrices in terms of exact 30 sparse signal 

of length 512 
 

As illustrated in Fig. 3, for a signal of length 512 with 30 randomly located spikes, the 
probability of exact recovery increases along with the increasing of the number of the 
measurements generated by each sensing matrix. All these models have nearly the same 
performance of recovering exactly sparse signals. In detail, the PKIH matrix and the SRMG 
matrix have almost the same performance and both of them are identical or even a little 
superior to that of GAU matrix. On the other hand, the curve of the probability of exact 
recovery of SRML matrix is slightly below that of GAU matrix. This result coincides with the 
concept of Fig. 2. The distributions of the entries of ΦΨ  of SRMG and PKIH are closer to 



2478                                                               Quan et al.: Semi-deterministic Sparse Matrix for Low Complexity Compressive Sampling 

normal distribution than that of SRML and result in higher performance, which proves the 
conjecture illustrated in subsection 2.3.  

Above all, based on the fact that M N<< , constructing a PKIH matrix saves at least 50% of 
random numbers than that of SRM matrix, which uses M N+  random numbers during matrix 
construction. These results indicate that the PKIH model could achieve the same performance 
of the SRM models and Gaussian random matrices with much less random numbers. 

Simulation 2: In this simulation, the CPU time occupied by constructing the sensing 
matrices Φ  corresponding to Simulation 1 is evaluated. All the parameters of these models 
are unchanged except the sampling rate is set to 0.5 and the signal length corresponding to Φ  
is varied from 500 to 5000 for simplicity. And for lager matrices, one may need to apply some 
kind of piecewise computing algorithm in order to avoid running out of memory, which is 
demonstrated in the next section. The Gaussian random matrix is not compared because of its 
known high complexity. In each experiment we count the CPU time of generating 100 
instances of the specified matrix. Every experiment is repeated 100 times and the average CPU 
time is showed in Fig. 4. 
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Fig. 4. The CPU time occupied by constructing a sensing matrices versus dimensions of the sensing 

matrices 
 

As clearly seen in Fig. 4, constructing a PKIH matrix consumes the least CPU time of all 
and it costs a little less time of generating a SRML matrix than that of a SRMG matrix. 
Moreover, the time costs of both SRMG and SRML increase rapidly along the increasing of 
matrix dimensions while the PKIH has a flat curve of that. These results indicate that by 
decreasing the using of random numbers, which usually has a time consuming generating 
algorithm, the PKIH model significantly reduces the computational complexity of sensing 
matrix construction.  

4.2 Simulation With Compressible Signals 
To evaluate the sensing performance for large and compressible signals, the rate-distortion 
(R-D) performance for standard test images is simulated. Signals of interest are natural images 
at the resolution of 256 256× , including Lena, Cameraman, Peppers, and Boats images. The 
well-known Daubechies 9/7 wavelet transform is used as the sparsifying basis Ψ  and all 
images are implicitly regarded as 1-D signals of length 2256 . The GPSR [25] algorithm is 
taken as recover strategy and the sampling rate ranges from 0.1 to 0.5.  

For such a large scale simulation, it takes a huge amount of system resources to implement 
the sensing method of a completely random matrix. Thus, for the purpose of benchmarking, a 
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more practical scheme of partial FFT [7] in the wavelet domain (WPFFT) is adopted. The 
WPFFT is to sense wavelet coefficients in the wavelet domain using the method of partial FFT. 
Theoretically, WPFFT has optimal performance as the Fourier matrix and is completely 
incoherent with the identity matrix. Note that the WPFFT still requires substantial amount of 
system resources because it is dense and the sensing procedure is applied in transform domain.  

Simulation 3: In this simulation, the sensing matrix Φ  is chosen as PKIH matrices ( 39q = , 
37λ = , PKIH(39,37)), SRM matrices of global model (SRMG), SRM matrices of local model 

(SRML), or WPFFT matrices [4]. The block size of the sub matrix of the former three models 
is set to 32. Besides, the SRML matrix with block size of sub matrix of 512 (SRML512) is 
taken into comparison. For each model, the corresponding fast computing algorithm is applied 
and every experiment is repeated 50 times. The curves of average reconstructed PSNR of these 
sensing matrices are showed in Fig. 5(a), (b), (c), and (d), which correspond to the input Lena, 
Cameraman, Peppers, and Boats images, respectively. 
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Fig. 5. Performance curves: Quality of signal reconstruction versus sampling rate M/N. (a) The 
256 256×  Lena image. (b) The 256 256×  Cameraman image.(c) The 256 256×  Peppers image. (d) 

The 256 256×  Boats image. 
 

There are a few notable observations from these experimental results. Firstly, the SMRL 
matrices are not efficient enough for sensing smooth signals like images. And by increasing 
the number of nonzero entries, the SRML512 matrix has got stable sensing performance but 
still not good enough. On the other hand, the PSNR curves of both the PKIH matrix and the 
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SRMG matrix are close to that of WPFFT, which is theoretically optimal. Meanwhile, there is 
almost no observable difference between the two curves. In particular, the maximum PSNR 
differences between the curves PKIH and SRMG are within 0.2dB in all cases. Besides, 
comparing with SRML matrix, the PKIH matrix has performance gain from 1.5dB to at most 
4.5dB on average. And the PSNR curves of it outperform that of the SRM512 matrix from 
0.2dB to 1.5dB on average. Note that the number of nonzero entries in a SRM512 matrix is 16 
times more than that in a PKIH matrix. 

Above all, the number of random numbers used by PKIH is 9%-33% of that used by SRMG 
or SRML. This implies that the well-designed sensing structure is an efficient alternative of 
the randomness of sensing matrices.  

Simulation 4: In this simulation, the CPU time of sensing a large scale signal using fast 
computing algorithm corresponding to sensing matrices Φ  of Simulation 3 is evaluated. All 
the parameters of these models remains unchanged except the sampling rate is set to 0.5 and 
the length of the input signal varies from 5000 to 55 10× . Every experiment is repeated 1000 
times and the average CPU time is plotted in Fig. 6 using logarithmic coordinates. 
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Fig. 6. The processing time of sensing the input signal using specific sensing matrix versus the length of 

the signal 
 

Clearly shown in the figure, the lines from top to bottom are curves of SRMG, SRML512, 
SRML and PKIH, which are corresponding to the CPU time occupied by these matrices along 
the increasing of the input signal length. The SRMG matrix costs the longest time and the cost 
increases more quickly than the others. That is because the sensing procedure of the SRMG 
matrix not only needs a large amount of random numbers, but also needs to determine the 
signal positions participating in the operation uniformly by the random numbers. On the other 
side, the rising tendency of SRML, SRML512 and PKIH appear the same. Meanwhile, the 
SRML costs more time than that of PKIH because of using more random numbers and the 
SRML512 costs more time than that of SRML because of it contains more nonzero entries. In 
addition, in terms of sensing signals of length 2 4256 6.5 10≈ × , PKIH takes roughly 65% of 
the time used by SRMG and 85% of that used by SRML512. In a word, the PKIH matrix 
achieves lowest computational complexity of sensing large signals. 
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5. Conclusion 
Sensing matrix design is one of three main topics of compressive sensing. Dense sensing 
matrix is computational costly while pure random sensing matrix is hard to implement. This 
paper developed a new kind of sensing matrix along with the corresponding fast sampling 
algorithm for large signal acquiring. The matrix is sparse, highly structured and the required 
number of random numbers is equal to that of generated measurements. In practical 
applications, these natures bring great benefits to parallelization, real-time processing, and 
easy hardware implementation. Simulation results showed that, comparing with SRMG, the 
proposed semi-deterministic matrices maintained almost the same sensing performance using 
9%-33% random numbers and 65% sensing time. And it achieves 0.2dB to 1.5dB performance 
gain on average and uses 85% sensing time in terms of sensing nature images in comparison 
with SRML512. These results indicate that the proposed semi-deterministic matrix 
significantly reduced the randomness and the computational complexity while maintained 
almost the same sensing performance with the popular sampling matrices. However, efficient 
recover algorithm of proposed matrix is not developed. Fortunately, in terms of applications 
using compressive sensing, the computational burden is at the decode side. And we will 
explore fast streaming decoding algorithm like 1 -Homotopy [26] in our future work. 
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