COMPLETION FOR TIGHT SIGN-CENTRAL MATRICES

MYUNG-SOOK CHO AND SUK-GEUN HWANG

ABSTRACT. A real matrix A is called a sign-central matrix if for, every matrix \tilde{A} with the same sign pattern as A, the convex hull of columns of \tilde{A} contains the zero vector. A sign-central matrix A is called a tight sign-central matrix if the Hadamard (entrywise) product of any two columns of A contains a negative component. A real vector $\mathbf{x} = (x_1, \ldots, x_n)^T$ is called stable if $|x_1| \leq |x_2| \leq \cdots \leq |x_n|$. A tight sign-central matrix is called a tight* sign-central matrix if each of its columns is stable.

In this paper, for a matrix B, we characterize those matrices C such that [B, C] is tight (tight*) sign-central. We also construct the matrix C with smallest number of columns among all matrices C such that [B, C] is tight* sign-central.

1. Introduction

Throughout this paper all the matrices and vectors are assumed to be real matrices and real vectors.

The sign of a real number a, sign(a), is defined by

$$sign(a) = \begin{cases} 1, & \text{if } a > 0, \\ 0, & \text{if } a = 0, \\ -1, & \text{if } a < 0. \end{cases}$$

The sign pattern of a real matrix A is the (0, 1, -1)-matrix obtained from A by replacing each of the entries by its sign. For a real matrix A, let $\mathcal{Q}(A)$ denote the set of all real matrices with the same sign pattern as A. A real matrix A is called a sign-central matrix if, for every $\tilde{A} \in \mathcal{Q}(A)$,

Received February 17, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 15A99.

Key words and phrases: sign-central matrix, tight sign-central matrix.

This work was supported by the SRC/ERC program of MOST/KOSEF (grant # R11-1999-054).

the convex hull of columns of \tilde{A} contains the zero vector $\mathbf{0}$ [1]. A sign-central matrix A is called a tight sign-central matrix if the Hadamard (entrywise) product of any two columns of A contains a negative entry [3]. A sign-central matrix A is called a minimal sign-central matrix if each of the submatrices obtained from A by deleting a column is not sign-central. In [3], Hwang et. al. proved that every tight sign-central matrix is minimal sign-central and characterized the tight sign-central matrices. They also determined the lower bound of the number of columns of a tight sign-central matrix in terms of the number of rows and the number of zero entries of the matrix.

In [4], Hwang et. al. determined the maximum and minimum numbers of zero entries of a tight sign-central matrix and the maximum ratio of the number of zero entries to the total number of entries of a tight sign-central matrix.

Consider a partial matrix $A = [B, \Box]$ in which the columns of B are specified and \Box is unspecified part. We are interested in filling up the rest of the columns so that A has certain property related to the sign-centrality. For example let

$$A_1 = \begin{bmatrix} 0 & 1 & ? \\ 1 & 0 & ? \end{bmatrix}, \ A_2 = \begin{bmatrix} 1 & ? & ? & ? \\ -1 & ? & ? & ? \end{bmatrix}.$$

Fill up unspecified entries of A_1 and A_2 respectively as follows,

$$A_1^{'} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix}, \ A_2^{'} = \begin{bmatrix} 1 & 1 & -1 & -1 \\ -1 & 1 & 1 & -1 \end{bmatrix}.$$

 A_1' is sign-central, A_2' is tight sign-central. We say that A_1 is completed to a sign-central matrix and A_2 is completed to a tight sign-central matrix. But there is no way to complete A_1 to a tight sign-central matrix.

A real vector $\mathbf{x} = (x_1, \dots, x_n)^T$ is called stable if $|x_1| \leq |x_2| \leq \dots \leq |x_n|$. A matrix is called *stable* if each of its columns is stable. A stable tight sign-central matrix is called a *tight** sign-central matrix.

In this paper, for a matrix B, we characterize those matrices C such that [B, C] is tight (tight*) sign-central. We also construct the matrix C with smallest number of columns among all matrices C such that [B, C] is tight* sign-central.

2. Preliminaries

Since the sign-centrality of a matrix depends only on the sign pattern of the matrix, we assume that all the matrices which appear in the sequel are sign pattern matrices.

The following lemma is a basic tool to test the sign-centrality.

LEMMA 2.1. ([1], [2]). An $m \times n$ matrix A is sign-central if and only if, for every nonsingular (0,1,-1)-diagonal matrix D, DA has a nonnegative column.

For a vector \mathbf{x} , let $\omega(\mathbf{x}) = 2^{\sigma(\mathbf{x})} - 1$ where $\sigma(\mathbf{x})$ denotes the number of zero components of \mathbf{x} . For a matrix $A = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n]$, let $\omega(A) = \sum_{i=1}^n \omega(\mathbf{a}_i)$. $\omega(A)$ is called the *weight* of A [3].

Let $E_1 = [1, -1]$, and for $k \geq 2$, let E_k denote the $k \times 2^k$ matrix defined by

(2.1)
$$E_k = \begin{bmatrix} \mathbf{e}^T & -\mathbf{e}^T \\ E_{k-1} & E_{k-1} \end{bmatrix}$$

where and in the sequel **e** denotes the all 1's vector with suitable number of components.

Let $A = [\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n]$ be an $m \times n$ matrix such that \mathbf{a}_i has k_i zero components, $(i = 1, 2, \ldots, n)$. For each $i = 1, 2, \ldots, n$, let A_i be the $m \times 2^{k_i}$ matrix obtained from the $m \times 2^{k_i}$ matrix $\mathbf{a}_i \mathbf{e}^T$ by replacing the $k_i \times 2^{k_i}$ zero submatrix by E_{k_i} (as defined by (2.1)), and let A^c denotes the matrix obtained from A by replacing the column i by A_i , $i = 1, 2, \ldots, n$. For example, if

(2.2)
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix},$$

then

$$A^c = \begin{bmatrix} 1 & 1 & -1 & -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 & 1 & -1 \\ \hline 1 & 1 & 1 & 1 & 1 & -1 & -1 \end{bmatrix}.$$

Note that A^c is uniquely determined by A.

Let $A = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n] = [a_{ij}]$. Suppose that $a_{st} = 0$. Let A' be the matrix obtained from A by replacing \mathbf{a}_t with $[\mathbf{a}'_t, \mathbf{a}''_t]$ where

$$\mathbf{a}' = [a_{1t}, \dots, a_{s-1,t}, 1, a_{s+1,t}, \dots, a_{mt}]^T,$$

$$\mathbf{a}'' = [a_{1t}, \dots, a_{s-1,t}, -1, a_{s+1,t}, \dots, a_{mt}]^T.$$

The replacement of \mathbf{a}_t by $[\mathbf{a}_t', \mathbf{a}_t'']$ is called the *splitting of* \mathbf{a}_t at a_{st} .

Notice also that A^c can be obtained from A by a sequence of splitting columns at $a_{st} = 0$ for the largest (s,t) in the lexicographical order. For example, for the matrix A in (2.2) A^c can be obtained as follows.

The last matrix equals A^c upto permutation of columns.

LEMMA 2.2. ([3]) For an $m \times n$ matrix A, the following are equivalent.

- (a) A is tight sign-central.
- (b) A is sign-central and $\omega(A) + n = 2^m$.
- (c) $A^c = E_m$ upto permutation of columns.

LEMMA 2.3. For a matrix A, let \hat{A} be the matrix obtained from A by splitting a column. Then

- (a) A is sign-central if and only if \hat{A} is sign-central.
- (b) A is tight sign-central if and only if \hat{A} is tight sign-central.

Proof. Write $A = [\mathbf{a}_1, B]$. We may assume that $\hat{A} = [\mathbf{a}_1', \mathbf{a}_1'', B]$ is obtained from A by splitting the first column at $a_{i1} = 0$ for some i.

- (a) It is clear that, for every nonsingular (0, 1, -1)-diagonal matrix D, DA has a nonnegative column if and only if $D\hat{A}$ has a nonnegative column, and (a) is proved.
- (b) Suppose that \mathbf{a}_1 has exactly k zero components. Then each of \mathbf{a}_1' and \mathbf{a}_2'' has k-1 zero components. Note that $\omega(\hat{A}) = 2(2^{k-1}-1)+\omega(B) = 2^k-2+\omega(B) = \omega(A)-1$. Let n, \hat{n} be the number of columns of A and \hat{A} respectively. Then $n+1=\hat{n}$. Thus $\omega(\hat{A})+\hat{n}=\omega(A)+n$. Now (b) follows from (a) and Lemma 2.2.

LEMMA 2.4. ([3]). Let A be a stable matrix of the form

$$A = \begin{bmatrix} \mathbf{0}^T & \mathbf{e}^T & -\mathbf{e}^T \\ X & Y & Z \end{bmatrix}.$$

Then A is tight sign-central if and only if [X, Y] is tight sign-central and Y = Z upto permutation of columns.

3. Main results

Let $A = [B, \square]$ be an $m \times n$ partial matrix in which the columns of B are specified. Can we complete A to a sign-central (tight sign-central, tight* sign-central) matrix? The answer to this question may depend on the specified columns and the number of columns to be filled.

For example, observe the partial matrices

$$A_1 = \begin{bmatrix} 0 & 1 & ? \\ 1 & 1 & ? \end{bmatrix}, \ A_2 = \begin{bmatrix} 1 & ? \\ 1 & ? \end{bmatrix}.$$

 A_1 can be completed to a sign-central matrix but it cannot be completed to a tight sign-central matrix. A_2 cannot be completed to a sign-central matrix.

In what follows we deal with the problem of completing a partial matrix to a tight sign-central (tight* sign-central) matrix.

In the sequel, for a matrix A with no two identical columns, we let $E_m \setminus A$ denote the matrix obtained from E_m by deleting every column which appear in A as a column.

Note that in order for a partial matrix $A = [B, \square]$, where B is the specified part of A, to be completed to a tight sign-central matrix it is necessary that B^c has no two identical columns because A^c must be equal to E_m upto permutation of columns.

THEOREM 3.1. Let B be a matrix with m rows such that B^c has no two identical columns. Let C be a matrix with m rows. Then [B,C] is tight sign-central if and only if $C^c = E_m \backslash B^c$ upto permutation of columns.

Proof. If [B, C] is tight sign-central, then, by Lemma 2.2, $[B^c, C^c] = [B, C]^c = E_m$ so that $C^c = E_m \backslash B^c$ upto permutation of columns.

Conversely, if $C^c = E_m \backslash B^c$, then $[B, C]^c = E_m$ upto permutation of columns, and again by Lemma 2.2 [B, C] is tight sign-central.

For a matrix $A = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n]$, we call a pair $\mathbf{a}_i, \mathbf{a}_j$ of columns a twin pair if \mathbf{a}_i and \mathbf{a}_j have the same zero-nonzero pattern and $\mathbf{a}_i \circ \mathbf{a}_j$ has exactly one negative component which is the first nonzero component where $\mathbf{a}_i \circ \mathbf{a}_j$ stands for the Hadamard (entrywise) product of \mathbf{a}_i and \mathbf{a}_j . Let A be a nonzero tight* sign-central matrix which may or may not have a zero row. Then, upto permutation of columns, A has the form

$$A = \begin{bmatrix} \mathbf{0}^T & \mathbf{0}^T & \mathbf{0}^T \\ \mathbf{0}^T & \mathbf{e}^T & -\mathbf{e}^T \\ X & Y & Y \end{bmatrix}$$

by Lemma 2.4. Thus a tight* sign-central matrix has a twin pair. Let A be a matrix with a twin pair $\mathbf{a}_i, \mathbf{a}_j$ and let A' be the matrix obtained from A by replacing the pair $\mathbf{a}_i, \mathbf{a}_j$ by $\frac{1}{2}(\mathbf{a}_i + \mathbf{a}_j)$. We call A' a twincontraction of A. For example $\begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$ is twin contraction of $\begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix}$.

For two matrices A, B we say that A is twin-contractible to B if there exist a sequence of matrices $A = A_0, A_1, \ldots, A_k = B$ such that A_i is a twin-contraction of A_{i-1} , $(i = 1, 2, \ldots, k)$.

LEMMA 3.2. Let A be a matrix with a twin pair of columns and let A' be a twin-contraction of A. Then the following hold.

- (a) A is sign-central if and only if A' is sign-central.
- (b) A is tight sign-central if and only if A' is tight sign-central.
- (c) A is tight* sign-central if and only if A' is tight* sign-central.

Proof. Since A is obtained from A' by splitting a column at a zero entry, (a), (b) follow from Lemma 2.3.

(c) It is clear that A is stable if and only if A' is stable. \Box

THEOREM 3.3. A matrix is tight* sign-central if and only if it is twin-contractible to the zero vector **0**.

Proof. Suppose that A is a tight* sign-central matrix. We prove that A is twin-contractible to $\mathbf{0}$ by induction on the number n of columns of A.

If n = 1. Then A = 0 and we are done.

Suppose that n > 1. Since A is tight* sign-central, A has a twin pair. Let A' be a twin-contraction of A then A' is tight* sign-central and A' has fewer columns than A. Then, by induction assumption, A' is twin-contractible to $\mathbf{0}$. Thus A is twin-contractible to $\mathbf{0}$.

Conversely, suppose that A is twin-contractible to $\mathbf{0}$. Then there exists a sequence of matrices $A = A_0, A_1, \ldots, A_k = \mathbf{0}$ such that A_i is a twin-contraction of A_{i-1} , $(i = 1, 2, \ldots, k)$. Since $\mathbf{0}$ is tight* sign-central we get that A is tight* sign-central by Lemma 3.2.

In order for a partial matrix $A = [B, \square]$ to be completed to a tight* sign-central matrix it is necessary that B is stable and B^c has no two identical columns.

THEOREM 3.4. Let B be a stable matrix with m rows such that B^c has no two identical columns. Let C be a matrix with m rows. Then [B,C] is tight* sign-central if and only if $E_m \backslash B^c$ is twin-contractible to C.

Proof. Suppose that [B, C] is tight* sign-central. Then $[B^c, C^c] = [B, C]^c = E_m$. Thus $C^c = E_m \setminus B^c$. Since C^c can be obtained from $C = [c_{ij}]$ by a sequence of splitting columns at $c_{st} = 0$ for the 'largest'(s, t) in the lexicographical order and since splitting a column at the bottommost zero entry is the reverse operation of twin-contraction, we see that $E_m \setminus B^c$ is twin-contractible to C.

Conversely, suppose that $E_m \backslash B^c$ is twin-contractible to C then, by reversing the twin-contraction sequence, we see that $C^c = E_m \backslash B^c$ upto permutation of columns. Thus [B, C] is tight sign-central by Theorem 3.1. Since C is clearly stable, we see that [B, C] is tight* sign-central. \square

Let F be a submatrix of E_m with m rows. Let $F^{\#}$ denote the matrix satisfying the conditions

- (i) F is twin-contractible to $F^{\#}$,
- (ii) $F^{\#}$ has no twin pair of columns.

Then $F^{\#}$ is uniquely determined by F. For, if F has no twin pair of columns, then $F^{\#} = F$. Suppose that F has twin pairs and that $\mathbf{x}_i, \mathbf{x}_i', (i=1,\ldots,k)$, are all those. Then $F = [\mathbf{x}_1, \mathbf{x}_1', \mathbf{x}_2, \mathbf{x}_2', \ldots, \mathbf{x}_k, \mathbf{x}_k', G]$ upto permutation of columns where G has no twin pair. Let $\mathbf{y}_i = \frac{1}{2}(\mathbf{x}_i + \mathbf{x}_i'), (i=1,2,\ldots,k),$ and H = [Y,G] where $Y = [\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_k]$. Since each \mathbf{y}_i has the form $\mathbf{y}_i = [0,\mathbf{z}_i^T]^T, Y$ can be written as

$$Y = \begin{bmatrix} \mathbf{0}^T \\ Z \end{bmatrix}.$$

By induction on the number of rows, $Z^{\#}$ is uniquely determined. Since G has no twin pair it follows that

$$F^{\#} = \begin{bmatrix} \mathbf{0}^T \\ Z^{\#} \end{bmatrix} G$$

telling us that $F^{\#}$ is uniquely determined.

In the sequel, for a stable matrix B with m rows such that B^c has no two identical columns, let Φ_B denote the matrix $(E_m \backslash B^c)^{\#}$ for brevity.

THEOREM 3.5. Let B be a stable matrix with m rows such that B^c has no identical columns. Then $[B, \Phi_B]$ is the tight* sign-central matrix which has the smallest number of columns among all tight* sign-central matrices of the form [B, X].

Proof. By Theorem 3.4, $[B, (E_m \backslash B^c)^{\#}]$ is a tight* sign-central matrix. Suppose that [B, C] is a tight* sign-central matrix. Then $E_m \backslash B^c$ is twin-contractible to C. If C is twin pair free, then $C = (E_m \backslash B^c)^{\#}$ by

the uniqueness of $(E_m \backslash B^c)^{\#}$. Otherwise, there is a twin pair free matrix C' to which C is twin-contractible, in which case $C' = (E_m \backslash B^c)^{\#}$. Thus C has at least as many columns as $(E_m \backslash B^c)^{\#}$ has, and the proof is complete.

Let B be a stable matrix with m rows such that B^c has no two identical columns. Let C be a matrix such that [B,C] is tight* sign-central. One may ask how many columns C can have. For the discussion of this question, for a matrix A, let n_A denote the number of columns of A.

Since
$$\omega(B) + n_B + \omega(C) + n_C = 2^m$$
, we see that
$$n_C = 2^m - \omega(B) - n_B - \omega(C) \le 2^m - \omega(B) - n_B.$$

By Theorem 3.5, $n_C \ge n_{\Phi_B}$. Now from Theorem 3.4 we get the following

COROLLARY 3.6. Let B be a stable matrix with m rows such that B^c has no two identical columns. Then there is an $m \times k$ matrix C such that [B,C] is tight* sign-central if and only if $n_{\Phi_B} \leq k \leq 2^m - \omega(B) - n_B$.

EXAMPLE. Let

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix}.$$

Then

so that

$$E_m \backslash B^c = \begin{bmatrix} 1 & -1 \\ -1 & -1 \\ -1 & -1 \end{bmatrix}.$$

Hence

$$\Phi_B = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}.$$

So

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$

is the tight* sign-central matrix with the smallest number of columns among all tight* sign-central matrices with $(0,0,1)^T$, $(0,1,-1)^T$ as the first two columns.

For the matrix

$$B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

we see right away that

$$\Phi_B = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix},$$

without looking at $E_3 \backslash B^c$, saving great amount of steps of splittings and twin-contractions. Is there some other methods of constructing Φ_B not taking care of whole steps from B to B^c and from $E_m \backslash B^c$ to Φ_B ? In what follows we discuss such a construction. We call column \mathbf{b}_i of B with no zero component a solitary column if there is no other column \mathbf{b}_i such that \mathbf{b}_i , \mathbf{b}_i form a twin pair.

Suppose that a stable matrix B with the property that B^c has no two identical columns is given.

If B has a zero row so that $B = \begin{bmatrix} \mathbf{0}^T \\ C \end{bmatrix}$, then

$$\Phi_B = \begin{bmatrix} \mathbf{0}^T \\ \Phi_C \end{bmatrix}$$
 .

If B has no zero row, then, upto permutation of columns, B can be written as

(3.1)
$$B = \begin{bmatrix} \mathbf{0}^T & \mathbf{e}^T & -\mathbf{e}^T & \mathbf{a}^T \\ X & Y & Y & Z \end{bmatrix},$$

where $\begin{bmatrix} \mathbf{a}^T \\ Z \end{bmatrix}$ consists of the solitary columns of B and $\begin{bmatrix} \mathbf{0}^T \\ X \end{bmatrix}$ or $\begin{bmatrix} \mathbf{a}^T \\ Z \end{bmatrix}$ or both may or may not be vacuous.

THEOREM 3.7. Let B be a stable matrix without zero rows such that B^c has no two identical columns. Then

$$\Phi_B = \begin{bmatrix} -\mathbf{a}^T & \mathbf{0}^T \\ Z & \Phi_{[X,Y,Z]} \end{bmatrix}$$

where \mathbf{a}, X, Y, Z are the submatrices of B as appeared in (3.1).

Proof. Let m be the number of rows of B. We prove the theorem by induction on m. The theorem clearly holds for m=1. Let m>1. The matrix $[B,\Phi_B]$ has no solitary column because it is tight* sign-central. So, upto permutation of columns,

$$\Phi_B = \begin{bmatrix} -\mathbf{a}^T & \mathbf{0}^T \\ Z & U \end{bmatrix}$$

for some matrix U, and hence

$$[B, \Phi_B] = \begin{bmatrix} \mathbf{0}^T & \mathbf{e}^T & -\mathbf{e}^T & \mathbf{a}^T & -\mathbf{a}^T & \mathbf{0}^T \\ X & Y & Y & Z & Z & U \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{0}^T & \mathbf{e}^T & \mathbf{e}^T & -\mathbf{e}^T & -\mathbf{e}^T & \mathbf{0}^T \\ X & Y & Z & Y & Z & U \end{bmatrix}$$

upto permutation of columns.

Now [X,Y,Z,U] is a tight* sign-central matrix with the smallest number of columns among the tight* sign-central matrices of the form [X,Y,Z,C]. Since [X,Y,Z] is stable and $[X,Y,Z]^c$ has no two identical columns, we get $U=\Phi_{[X,Y,Z]}$ by induction, and the proof is complete.

EXAMPLE. Let

$$B = egin{bmatrix} 0 & 1 \ 0 & 1 \ 1 & -1 \end{bmatrix} = egin{bmatrix} \mathbf{0}^T & \mathbf{e}^T & -\mathbf{e}^T & \mathbf{a}^T \ X & Y & Y & Z \end{bmatrix}.$$

Then $X = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, Y = \emptyset, \mathbf{a}^T = \begin{bmatrix} 1 \end{bmatrix}, Z = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Therefore

$$\begin{bmatrix} -\mathbf{a}^T \\ Z \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

and $[X,Y,Z] = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$. Since, clearly, $\Phi_{[X,Y,Z]} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$, we get

$$\Phi_B = \begin{bmatrix} -1 & 0 \\ 1 & -1 \\ -1 & -1 \end{bmatrix}.$$

References

- T. Ando and R. A. Brualdi, Sign-central matrices, Linear Algebra Appl. 208/209 (1994), 283–295.
- [2] R. A. Brualdi and B. L. Shader, Matrices of sign-solvable linear systems, Cambride Tracts in Mathematics 116, Cambridge University Press, New York, 1995.
- [3] S.-G. Hwang, I.-P. Kim, S.-J. Kim and X. D. Zhang, Tight sign-central matrices, Linear Algebra Appl. 371 (2003), 225–240.
- [4] S.-G. Hwang, I.-P. Kim, S.-J. Kim and S.-G. Lee, The number of zeros of a tight sign-central matrix, Linear Algebra Appl. 407 (2005), 296–310.

DEPARTMENT OF MATHEMATICS EDUCATION, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA

E-mail: sghwang@knu.ac.kr