DOI QR코드

DOI QR Code

Disturbance analysis of hydropower station vertical vibration dynamic characteristics: the effect of dual disturbances

  • Zhi, Baoping (School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology) ;
  • Ma, Zhenyue (School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology)
  • Received : 2013.12.04
  • Accepted : 2014.06.08
  • Published : 2015.01.25

Abstract

The purpose of this work is to analyze the effect of structure parameter disturbance on the dynamic characteristics of a hydropower station powerhouse. A vibration model with a head-cover system is established, and then the general disturbance problem analysis methods are discussed. Two new formulae based on two types of disturbances are developed from existing methods. The correctness and feasibility of these two formulae are validated by analyzing the hydropower station powerhouse vibration model. The appropriate calculation method for disturbance of the hydropower station powerhouse vibration dynamic characteristics is derived.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Abbasbandy, S. (2006), "The application of the homotopy analysis method to nonlinear equations arising in heat transfer", Phys. Lett. A, 360, 109-113. https://doi.org/10.1016/j.physleta.2006.07.065
  2. Benjamin, A. (1979), "Some properties of Hadamard matrices generated recursively by Kronecker products", Lin. Algebra It. Appl., 25, 27-39. https://doi.org/10.1016/0024-3795(79)90003-X
  3. Bogoliubov, N.N. and Mitropolsky, Y.A. (1961), Asymptotic methods in the theory of nonlinear oscillations, Gordon and Breach Science Pub, New York.
  4. Collins, J.D. and Thompson, W.T. (1969), "Eigenvalue problem for structural systems with statistical properties", AIAA J., 7(4), 642-648. https://doi.org/10.2514/3.5180
  5. Friemann, E.A. (1963), "On a new method in the theory of irreversible processes", J. Math. Phys., 4, 410-418. https://doi.org/10.1063/1.1703968
  6. Gao, W. (2006a), "Interval natural frequency and mode shape analysis for truss structures with interval parameters", Finite Elem. Anal. Des., 42(6), 471-477. https://doi.org/10.1016/j.finel.2005.09.003
  7. Gao, W. (2006b), "Stochastically optimal active control of a smart truss structure under stationary random excitation", J. Sound Vib., 290(3-5), 1256-1268. https://doi.org/10.1016/j.jsv.2005.05.019
  8. Gao, W., Hen, J.J., Hu, T.B., Kessissoglou, N.J. and Randall, R.B. (2004), "Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation", Struct. Eng. Mech., 18(2), 137-150. https://doi.org/10.12989/sem.2004.18.2.137
  9. Gao, W., Song, C.M. and Tin-Loi, F. (2009), "Probabilistic interval response and reliability analysis of structures with a mixture of random and interval properties", Comput. Model. Eng. Sci., 46(2), 151-189.
  10. Hisada, T. and Nakagiri, S. (1982), "Stochastic finite element analysis of uncertain structural systems", Proceedings of the 4th International Conference in Australia on Finite Element Methods in Engineering, 133-137.
  11. Kaminski, M. (2011), "Least squares stochastic boundary element method", Eng. Anal. Bound. Elem., 35(5), 776-784. https://doi.org/10.1016/j.enganabound.2011.01.004
  12. Kaplun, S. (1967), Fluid mechanics and singular perturbations, Academic Press, New York.
  13. Kaplunov, J.D., Nolde, E.V. and Shorr, B.F. (2005), "A perturbation approach for evaluating natural frequencies of moderately thick elliptic plates", J. Sound Vib., 281(3-5), 905-919. https://doi.org/10.1016/j.jsv.2004.02.046
  14. Krylov, N. and Bogoliubov, N.N. (1947), Introduction to nonlinear mechanics, Princeton University Press, Princeton N.J.
  15. Li, J. (1993), "Structural dynamic analysis of certain trends", World Earthq. Eng., 23, 1-8.
  16. Liu, W.K., Bestefield, G. and Belytschko, T. (1988), "Variational approach to probabilistic finite elements", J. Eng. Mech., ASCE, 144(2), 2115-2133.
  17. Ma, J., Chen, J.J., Gao, W. and Zhai, T.S. (2006b), "Non-stationary stochastic vibration analysis of fuzzy truss system", Mech. Syst. Sig. Pr., 20(8), 1853-1866. https://doi.org/10.1016/j.ymssp.2006.04.003
  18. Ma, J., Chen, J.J., Gao, W. and Zhao, Y.Y. (2006a), "Stationary random response analysis of linear fuzzy truss", Struct. Eng. Mech., 22(4), 469-481. https://doi.org/10.12989/sem.2006.22.4.469
  19. Ma, J., Gao, W., Wriggers, P., Wu, T. and Sahraee, S. (2010), "The analyses of dynamic response and reliability of fuzzy-random truss under stationary stochastic excitation", Comput. Mech., 45(5), 443-455. https://doi.org/10.1007/s00466-009-0463-7
  20. Ma, Z.Y. and Dong, Y.X. (2003), Dynamics of Water Turbine Generator Set, Dalian University of Technology Press, Dalian.
  21. Madani, M., Fathizadeh, M., Khan, Y. and Yildirim, A. (2011), "On the coupling of the homotopy perturbation method and Laplace transformation", Math. Comput. Model., 53(9-10), 1937-1945. https://doi.org/10.1016/j.mcm.2011.01.023
  22. Poincare, H. (1960), New methods of celestial mechanics, Also History of Modern Physics and Astronomy, Washington.
  23. Popescu, T.D. (2011), "Detection and diagnosis of model parameter and noise variance changes with application in seismic signal processing", Mech. Syst. Sig. Pr., 25(5), 1598-1616. https://doi.org/10.1016/j.ymssp.2011.01.006
  24. Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2001), "Natural frequencies of composite plates with random material properties using higher-order shear deformation theory", Int. J. Mech. Sci., 43, 2193-2214. https://doi.org/10.1016/S0020-7403(01)00046-7
  25. Tsien, H.S. (1956), "The Poincare-Lighthill-Kuo method", Adv. Appl. Mech., 4, 281-293. https://doi.org/10.1016/S0065-2156(08)70375-2
  26. Ueda, T. (1981), 20.6*104kW Site test of the unit
  27. Vetter, W.J. (1973), "Matrix calculus operation and Taylor expansions", SIAM Rev., 15(2), 352-369. https://doi.org/10.1137/1015034
  28. Zhang, Q. (2001), A Study on Dynamic Response of the Structure with Uncertain Physical Parameters, Hohai University, NaJing.
  29. Zhang, Y.M. (2007), "Frequency domain transfer degree of vibration transmission path ordering", Prog. Nat. Sci., 17(3), 410-414.
  30. Zhang, Y.M., Chen, S.H., Liu, Q.L. and Liu, T.Q. (1996), "Stochastic perturbation finite elements", Comput. Struct., 59(3), 425-429. https://doi.org/10.1016/0045-7949(95)00267-7
  31. Zhang, Y.M., Wen, B.C. and Liu, Q.L. (2003), "Reliability Sensitivity for Rotor-Stator Systems with Rubbing", J. Sound Vib., 259(5), 1095-1107. https://doi.org/10.1006/jsvi.2002.5117

Cited by

  1. Study of the Vibration Transmission and Path Recognition of an Underground Powerhouse Using Energy Finite Element Method vol.2016, 2016, https://doi.org/10.1155/2016/5039578
  2. Study on Vibration Transmission among Units in Underground Powerhouse of a Hydropower Station vol.11, pp.11, 2018, https://doi.org/10.3390/en11113015
  3. Energy flow transmission analysis on the powerhouse vibration under turbine hydraulic loads vol.240, pp.None, 2015, https://doi.org/10.1088/1755-1315/240/6/062001
  4. Dynamic Analysis of Hydro-Turbine Governing System with Multistochastic Factors vol.14, pp.11, 2015, https://doi.org/10.1115/1.4043834