• Title/Summary/Keyword: Haar-Like

Search Result 148, Processing Time 0.022 seconds

HW/SW Co-design of a Visual Driver Drowsiness Detection System

  • Lai, Kok Choong;Wong, M.L. Dennis;Islam, Syed Zahidul
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.1
    • /
    • pp.31-41
    • /
    • 2013
  • There have been various recent methods proposed in detecting driver drowsiness (DD) to avert fatal accidents. This work proposes a hardware/software (HW/SW) co-design approach in implementation of a DD detection system adapted from an AdaBoost-based object detection algorithm with Haar-like features [1] to monitor driver's eye closure rate. In this work, critical functions of the DD detection algorithm is accelerated through custom hardware components in order to speed up processing, while the software component implements the overall control and logical operations to achieve the complete functionality required of the DD detection algorithm. The HW/SW architecture was implemented on an Altera DE2 board with a video daughter board. Performance of the proposed implementation was evaluated and benchmarked against some recent works.

  • PDF

An Efficient Face Detection Method using Skin Color Information and Parallel Processing in Multi-Core SoC (멀티코어 SoC에서 피부색상 정보와 병렬처리를 이용한 효율적인 얼굴 검출 방법)

  • Kim, Hong-Hee;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.375-381
    • /
    • 2012
  • In this paper, we present an implementation of Viola-Jones algorithm in a multi-core SoC by using skin color information and a parallel processing method. In order to reduce unnecessary operations and improve the detection speed, we adopted a face detection algorithm based on skin color and deleted background image. The algorithm is functionally divided into several parts taking account of the size and the dependency so that the divided functions can be proceeded in parallel. Experiment results in SoC with built-in Cortex-A9 multi core show that it is about 1.8 times faster than the existing algorithm which is not divided.

A Study on Real-time Vehicle Recognition and Tracking in Car Video (차량에 장착되어 있는 영상의 전방의 차량 인식 및 추적에 관한 연구)

  • Park, Daehyuck;Lee, Jung-hun;Seo, Jeong Goo;Kim, Jihyung;Jin, Seogsig;Yun, Tae-sup;Lee, Hye;Xu, Bin;Lim, Younghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.254-257
    • /
    • 2015
  • 차량 인식 기술은 운전자에게 차량 충돌과 같은 위험요소를 사전에 인식시키거나 차량을 자동으로 제어하는 기술로 각광 받고 있다. 본 논문에서는 입력 영상에서 차량이 나타날 수 있는 관심 영역을 설정한 다음 미리 학습된 검출기를 통한 Haar-like와 Adaboost 알고리즘으로 차량 후보 영역을 검출하고 중복된 영역을 제거하기 위인식 기술해 클러스터링 기법을 적용하고, 칼만필터로 프레임 영상에서 차량을 추적 하고, 다시 중복된 영역에 대해 클러스터링 기법을 적용하는 방법을 제안하였다.

  • PDF

A Study on Real-time Pedestrian Recognition and Tracking in Car Video (차량에 장착되어 있는 영상의 주변의 보행자를 인식 및 추적을 위한 연구)

  • Park, Daehyuck;Lee, Jung-hun;Yun, Tae-sup;Seo, Jeong Goo;Kim, Jihyung;Lee, Hye;Xu, Bin;Jin, Seogsig;Lim, Younghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.258-261
    • /
    • 2015
  • 본 논문에서는 주행 중에 보행자의 인식 및 추적을 위해서 차량에서 촬영된 영상정보를 이용하여 주변의 보행자를 찾고, 사고 위험성이 있는 보행자를 인식하기 위해서 보행자 파악 및 보행자와의 거리를 측정하기 위한 연구를 하고자 한다. 본 논문에서는 차량에 정착된 카메라를 통한 보행자 인식 기술에 대해 연구 하였다. 제안한 방법은 보행자 인식 단계에서 Cascasde HOG, Haar-like 알고리즘을 적용하였고, 추적 단계에서 칼만 필터와 클러스터링 기법을 결합하여 실시간으로 보행자를 인식 및 추적하였다.

  • PDF

Multi-view Human Recognition based on Face and Gait Features Detection

  • Nguyen, Anh Viet;Yu, He Xiao;Shin, Jae-Ho;Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1676-1687
    • /
    • 2008
  • In this paper, we proposed a new multi-view human recognition method based on face and gait features detection algorithm. For getting the position of moving object, we used the different of two consecutive frames. And then, base on the extracted object, the first important characteristic, walking direction, will be determined by using the contour of head and shoulder region. If this individual appears in camera with frontal direction, we will use the face features for recognition. The face detection technique is based on the combination of skin color and Haar-like feature whereas eigen-images and PCA are used in the recognition stage. In the other case, if the walking direction is frontal view, gait features will be used. To evaluate the effect of this proposed and compare with another method, we also present some simulation results which are performed in indoor and outdoor environment. Experimental result shows that the proposed algorithm has better recognition efficiency than the conventional sing]e view recognition method.

  • PDF

Implementation of A Safe Driving Assistance System and Doze Detection (졸음 인식과 안전운전 보조시스템 구현)

  • Song, Hyok;Choi, Jin-Mo;Lee, Chul-Dong;Choi, Byeong-Ho;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.30-39
    • /
    • 2012
  • In this paper, a safe driving assistance system is proposed by detecting the status of driver's doze based on face and eye detection. By the level of the fatigue, safe driving system alarms or set the seatbelt on vibration. To reduce the effect of backward light and too strong solar light which cause a decrease of face and eye detection rate and false fatigue detection, post processing techniques like image equalization are used. Haar transform and PCA are used for face detection. By using the statistic of the face and eye structural ratio of normal Koreans, we can reduce the eye candidate area in the face, which results in reduction of the computational load. We also propose a new eye status detection algorithm based on Hough transform and eye width-height ratio, which are used to detect eye's blinking status which decides doze level by measuring the blinking period. The system alarms and operates seatbelt on vibration through controller area network(CAN) when the driver's doze level is detected. In this paper, four algorithms are implemented and proposed algorithm is made based on the probability model and we achieves 84.88% of correct detection rate through indoor and in-car environment experiments. And also we achieves 69.81% of detection rate which is better result than that of other algorithms using IR camera.

Design and Implementation of Eye-Gaze Estimation Algorithm based on Extraction of Eye Contour and Pupil Region (눈 윤곽선과 눈동자 영역 추출 기반 시선 추정 알고리즘의 설계 및 구현)

  • Yum, Hyosub;Hong, Min;Choi, Yoo-Joo
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • In this study, we design and implement an eye-gaze estimation system based on the extraction of eye contour and pupil region. In order to effectively extract the contour of the eye and region of pupil, the face candidate regions were extracted first. For the detection of face, YCbCr value range for normal Asian face color was defined by the pre-study of the Asian face images. The biggest skin color region was defined as a face candidate region and the eye regions were extracted by applying the contour and color feature analysis method to the upper 50% region of the face candidate region. The detected eye region was divided into three segments and the pupil pixels in each pupil segment were counted. The eye-gaze was determined into one of three directions, that is, left, center, and right, by the number of pupil pixels in three segments. In the experiments using 5,616 images of 20 test subjects, the eye-gaze was estimated with about 91 percent accuracy.

  • PDF

Implementation of Pedestrian Detection and Tracking with GPU at Night-time (GPU를 이용한 야간 보행자 검출과 추적 시스템 구현)

  • Choi, Beom-Joon;Yoon, Byung-Woo;Song, Jong-Kwan;Park, Jangsik
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.421-429
    • /
    • 2015
  • This paper is about an approach for pedestrian detection and tracking with infrared imagery. We used the CUDA(Computer Unified Device Architecture) that is a parallel processing language in order to improve the speed of video-based pedestrian detection and tracking. The detection phase is performed by Adaboost algorithm based on Haar-like features. Adaboost classifier is trained with datasets generated from infrared images. After detecting the pedestrian with the Adaboost classifier, we proposed a particle filter tracking strategies on HSV histogram feature that exploit adaptively at the same time. The proposed approach is implemented on an NVIDIA Jetson TK1 developer board that is full-featured device ideal for software development within the Linux environment. In this paper, we presented the results of parallel processing with the NVIDIA GPU on the CUDA development environment for detection and tracking of pedestrians. We compared the object detection and tracking processing time for night-time images on both GPU and CPU. The result showed that the detection and tracking speed of the pedestrian with GPU is approximately 6 times faster than that for CPU.

THE DECISION OF OPTIMUM BASIS FUNCTION IN IMAGE CLASSIFICATION BASED ON WAVELET TRANSFORM

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.169-172
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have been tried to enhance classification accuracy. Previous studies show that the classification technique based on wavelet transform is more effective than that of traditional techniques based on original pixel values, especially in complicated imagery. Various wavelets can be used in wavelet transform. Wavelets are used as basis functions in representing other functions, like sinusoidal function in Fourier analysis. In these days, some basis functions such as Haar, Daubechies, Coiflets and Symlets are mainly used in 2D image processing. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we computed the wavelet coefficients of satellite image using 10 different basis functions, and then classified test image. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis function. The energy parameter of signal is the sum of the squares of wavelet coefficients. The energy parameter is calculated by sub-bands after the wavelet decomposition and the energy parameter of each sub-band can be a favorable feature of texture. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

  • PDF

A New Confidence Measure for Eye Detection Using Pixel Selection (눈 검출에서의 픽셀 선택을 이용한 신뢰 척도)

  • Lee, Yonggeol;Choi, Sang-Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.7
    • /
    • pp.291-296
    • /
    • 2015
  • In this paper, we propose a new confidence measure using pixel selection for eye detection and design a hybrid eye detector. For this, we produce sub-images by applying a pixel selection method to the eye patches and construct the BDA(Biased Discriminant Analysis) feature space for measuring the confidence of the eye detection results. For a hybrid eye detector, we select HFED(Haar-like Feature based Eye Detector) and MFED(MCT Feature based Eye Detector), which are complementary to each other, as basic detectors. For a given image, each basic detector conducts eye detection and the confidence of each result is estimated in the BDA feature space by calculating the distances between the produced eye patches and the mean of positive samples in the training set. Then, the result with higher confidence is adopted as the final eye detection result and is used to the face alignment process for face recognition. The experimental results for various face databases show that the proposed method performs more accurate eye detection and consequently results in better face recognition performance compared with other methods.