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요  약  치명적인 사고를 막기 위해 드라이버 졸음 (DD)를 검출하는 다양한 최근 방법이 제안되고있다. 본 논문은  
운전자의 눈에 폐쇄 속도를 모니터링 할 수 있는 기능을 AdaBoost 기반 물체 검출 알고리즘에 적용한 DD 탐지 시스

템 구현에서 하드웨어/소프트웨어 공동 설계 방법을 제안한다. 소프트웨어 구성 요소는 DD 검출 알고리즘 중에서 

필요한 기능성을 완전하게 달성하기 위해 전체적인 제어 및 논리 연산을 구현한다. 반면, 본 연구에서는 DD 검출 

알고리즘의 중요한 기능은 처리를 가속화하기 위해 맞춤형 하드웨어 구성 요소를 통해 가속된다. 하드웨어/소프트웨

어 아키텍처는 비디오 도터 보드와 알테라 DE2 보드에 구현되었습니다. 제안 된 구현의 성능을 평가하고 몇 가지 

최근의 작품을 벤치마킹했다.

Abstract  There have been various recent methods proposed in detecting driver drowsiness (DD) to avert 
fatal accidents. This work proposes a hardware/software (HW/SW) co-design approach in implementation of 
a DD detection system adapted from an AdaBoost-based object detection algorithm with Haar-like features 
[1] to monitor driver’s eye closure rate. In this work, critical functions of the DD detection algorithm is 
accelerated through custom hardware components in order to speed up processing, while the software 
component implements the overall control and logical operations to achieve the complete functionality 
required of the DD detection algorithm. The HW/SW architecture was implemented on an Altera DE2 board 
with a video daughter board. Performance of the proposed implementation was evaluated and benchmarked 
against some recent works. 
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1. Introduction

Driver drowsiness (DD) is one of the leading causes 

of road accidents in many countries throughout the 

world. Not only has it caused injuries and deaths, but 

also resulted in the lost of properties and productivity as 

well. There are many commercial systems that attempts 

to mitigate the above problem to a certain extend, such 

as lane departure warning systems and collision warning 

systems. However, all these commercial systems have a 

shortcoming – they generate warnings often after the 

driver has already dozed off. More promising systems 

that directly estimate driver's state of drowsiness, such 

as systems that monitors the driver's steering response, 

ECG, head movement, eye closure and movement, 

yawning etc. shows higher effectiveness in detecting 

and warning imminent DD. Of all these systems, those 

that monitor the eye closure rate, such as PERCLOS [2] 

is often favoured owing to its non-contact and 

non-invasive nature.

There are many systems that use PERCLOS as the 

measure of a DD. The implementations range from 
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simple edge detection-based systems [3] to complex 

Hough transform-based systems [4]. However, simple 

detection systems generally suffered from 

low-accuracy or robustness. On the other hand, 

complex systems are not easily adapted onto embedded 

systems, therefore there is a lack of practicality in real 

deployment. There are some known works in 

embedded DD detection systems [5, 6]. However, these 

systems did not employ complex detection algorithms 

as described in this work.

In this work, we realized a FPGA-based DD 

detection system using the object detection algorithm 

by Viola and Jones [1]. The main motivation behind the 

choice of this algorithm is due to its high detection rate 

and fast processing. Furthermore, many prior attempts 

of this algorithm [7--9] have confirmed the viability of 

this algorithm for embedded platforms. The proposed 

system will monitor driver’s eye closure rate, 

PERCLOS to determine the driver's state of 

drowsiness. In our design, in an attempt to strike a 

balance between speed, complexity and cost of the final 

product, we have opted to adopt a hardware/software 

(HW/SW) co-design approach: to increase the speed of 

detection, critical functions of the algorithm were 

accelerated using custom hardware IPs. Other 

non-critical functions were carried out by a soft-core 

Nios II processor.

The remaining of this work is arranged as follows: 

Section II provides a quick review of necessary 

background materials and some related works. The 

actual design and implementation are then presented in 

Section III. Following which, we present and 

benchmark the experimental results against related 

works in Secion IV. Finally, in Section V, we conclude 

this work in by highlighting some areas of future 

extension.

2. Background Review and Related 

    Works 

The first half of this section describes briefly the 

AdaBoost-based object detection, while the second half 

summarizes existing visual-based DD detection 

system.

2.1 AdaBoost-Based Object Detection

The Viola-Jones object detection algorithm (c.f. [1]) 

introduced by classifies objects by using simple 

Haar-like features as shown in Figure 1, which detect 

either line or edge features. In essence, the detection is 

achieved by first individually summing up the pixel 

values in the white region and the black region, and 

then calculates the difference of the weighted sum of 

each of the regions. TheThis set of Haar features were 

extended in [10], which is the full set of features 

adopted in OpenCV, a popular computer vision software 

(C++) library [11]. 

Next, a weak classifier, one that has low 

classification accuracy, compares the resultant value to 

see if it exceeds a pre-defined threshold. If the 

threshold is exceeded, the weak classifier outputs true, 

meaning that the line or edge feature exists. A large 

number of weak classifiers can then be combined to 

form a strong classifier with high classification 

accuracy that is able to detect more complicated 

objects. The selection of features and the training of 

classifiers are achieved using a variant of AdaBoost, a 

supervised machine learning algorithm [12].

To detect object of different sizes in an input image, 

a rectangular mask steps the entire image to generate 

sub-images called sub-windows. Once the mask 

completely scans the whole image, it increases its size 

(aspect ratio is maintained) and scans the entire image 

again to generate a new set of sub-windows. This 

process is repeated until the maximum size of the mask 

is reached. Detection is performed on a sub-window as 

soon as it is generated.

The cascade structure was introduced by Viola and 

Jones to achieve rapid processing. This cascade 

structure consists of a series of strong classifiers called 

stage classifiers. The idea is to train a cascade that can 

quickly reject as much negative sub-windows in earlier 
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stages using simpler classifiers as possible, allowing 

almost all positive instances to pass to the next stage. 

Latter stages of more complex classifiers then process 

the sub-windows that are more likely to contain the 

object of interest in order to reduce false positives. 

Since many negative sub-windows get rejected early 

in the stages, are saved and the resultant detection 

speed is higher.

2.2 Existing Eye-Monitoring Detection Systems

There are a large number of eye monitoring-based 

detection systems [13 – 18] that uses an eye 

illumination technique [19] to detect driver’s eyes. The 

technique exploits the ‘red eye’ effect often seen on 

pictures taken by a camera with flash on. By shining 

two infrared lights of different direction onto the driver 

in an alternating fashion, eyes can be detected on the 

captured images by a bright glow emanating from the 

pupils of the eyes. While this technique can detect eyes 

well and operates in low-light conditions, the detection 

is highly dependent on factors such as the brightness 

and size of the pupils, face orientation, external 

illumination interference, distance of the driver from the 

camera etc. as described by [4].

1. Edge Features

3. Line Features

2. Centre-Surround Features

(a) (b)

(a) (b) (c) (d)

(a)

Fig. 1. Upright Haar-like features used in OpenCV [3]. 

Other systems that did not employ the IR 

illumination technique started off with simple 

image-processing methods such as binarisation [20], 

eye width and height measurement [21], histograms 

[22], edge detection [3, 5, 6] and template matching [3]. 

Wang and Chin [5] uses grayscale projection, edge 

detection with Prewitt operator and complexity function 

for eye detection, while Moreno et al. [6] uses edge 

filters to highlight the edges of images, and sums up 

the number of white/black pixels to detect eye regions. 

Detection rate were not discussed.

As general processing platforms grew more 

powerful there are systems that employ more complex 

features, such as skin colour predicates [23] or skin 

colour models together with an artificial neural network 

[24] to detect the eyes. More recent system [4] applies 

a modified circle Hough transform over the whole 

image to detect possible candidate regions that contain 

eyes. The system is complemented by an artificial 

neural network to classify open or closed eyes. These 

modern systems exhibit high accuracy. However, all of 

the abovementioned systems are implemented on a 

general purpose platform, as opposed to embedded 

system.

As discussed earlier, there isn’t any embedded DD 

detection system that uses a robust and 

high-performing detection algorithm reported to date. 

To our knowledge, this work is the first report of an 

embedded DD detection system that uses the 

Viola-Jones object detection algorithm.

3. Hardware Implementation

In our work, Altera Quartus II, SOPC Builder, DSP 

Builder and MATLAB were used to develop the 

prototype system. The controller for the camera used to 

capture driver’s eyes, which deals with image data 

acquisition and color-to-grayscale conversion, is not 

described here. The prototype system is developed onto 

Altera DE2 board with Altera Cyclone II 2C35 FPGA. 

A video daughter card was used in conjunction with 

the DE2 board.

As in a typical hardware realization of an algorithm, 

a compromise between available hardware resources 
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and processing speed is unavoidable. In our design, we 

aim to attain as much parallelism as possible with 

available hardware resources in order to achieve 

real-time detection. Our implementation follows closely 

to that of OpenCV.

3.1 Overview of HW/SW Co-Design

Figure 2 shows the overall block diagram of the 

FPGA implementation. In our implementation, we chose 

the fast version of Altera Nios II [25] as the processor 

(soft-core), connected to the memory-mapped system 

bus known as Avalon Switch Fabric. The reason for 

the fast version is because we have several 

components of the detection algorithm running on 

software; therefore a faster processor allows faster 

execution of these software components. The eye 

detection module consists of two IPs, the Integral 

Image Generator and the Haar Calculator. 

FPGA

Avalon Switch Fabric (Bus)

Nios II
Processor

JTAG
Module

SRAM
Controller

SRAM
(256×16)

Host

Camera
Controller

SDRAM
(1M×16×4 banks)

VGA
Out

Camera

Eye Detector
Module

Timestamp
Timer

Arrow shows
direction of data traffic

Fig. 2. Components of the hardware software co-design 

implementation

Each of them has a separate connection to the 

system bus. The camera is controlled by the camera 

controller. The SDRAM controller resides in the 

camera controller, and stores all captured images from 

the camera. The camera controller was modified to 

include an Avalon Memory-Mapped (Avalon-MM) 

interface [26] to allow system access to the SDRAM. 

Wait states were inserted into the camera controller 

slave interface in order to maintain high synthesized 

speed. It takes 4 clock cycles for the processor to read 

from a new address in SDRAM. Processor instructions 

and data are stored in SRAM. The timestamp timer is 

needed for PERCLOS calculations. The alarm module is 

connected to an alarm-generating device, i.e. buzzer 

and speaker etc. JTAG is used for software debugging 

purposes and can be removed without affecting the 

system.

3.2 Hardware Integral Image Generator

An integral image is the sum of all pixel values 

above and to the left, inclusive. Our implementation 

follows the idea described in [9]. Instead of scaling the 

sub-window to fit larger Region of Interest (ROI) of 

the input image, the ROI is scaled to fit a fixed-sized 

sub-window. Nearest neighbor algorithm was used for 

scaling. Since the sub-window is fixed in size, there is 

no need to scale Haar-like features. This saves limited 

hardware resources, such as memory storage. 

Moreover, scaling input images has very little effect on 

detection rate, as proven by [9].

The integral image(and integral image squared) 

generator comprises of multiply-accumulators (MAC) 

and memories (RAM). It generates integral image 

based on image data inside the sub-window. This 

method as described in [7] forgoes the use of large 

storage to store the entire integral image based on a 

single input image frame. The drawback, however, is 

that every time a sub-window changes, a new integral 

image is generated, even if only a few pixels in the 

sub-window changes (i.e. steps to the right). The 

result is excessive repetitive computation, but is 

warranted due to the limited embedded memories inside 

the FPGA. Our implementation uses the fixed 

sub-window of 16×8 pixels, which is able to fit inside 

a single 7-bit address, 32-bit data M4K block (4608 

bits including parity) in the Altera FPGA [27].

The integral image generator uses two memory 

blocks to store temporary integral image data in order 

to generate the integral image in one succession. To 



HW/SW Co-design of a Visual Driver Drowsiness Detection System

35

A
va

lo
n 

S
w

itc
h 

Fa
br

ic

Avalon-
MM

Slave
Interface
(Write) Multiply-

Accumulator

Control
Logic

M4K Memory
(128×32)

M4K Memory
(128×32)

Adder

Avalon-
MM

Slave
Interface
(Read)

Mux

Write address
(x, y)

Write
address

Write data
i(x, y)

Read 
address

(x, y)

Read
data
ii(x, y)

Reset on
x = 0

(new row) Cumulative 
column data

c(x, y)

Previous row data
ii(x, y – 1)

Write address
(x, y)

Read address
(x, y)

Read data
ii(x, y)

Integral image data
ii(x, y)

Integral 
image data

ii(x, y)

Read
previous row

address
(x, y – 1)

Read
previous row

data
ii(x, y – 1)

Select
previous row data 

on x > 0Forward write data 
to integral image 

squared block

Fig. 3. Block Diagram of the Hardware Integral Image Generator.

illustrate this, we have to look at the following 

equation, where ii refers to integral image values, while 

c refers to the cumulative column sum:

(, =(,)+(, )+(, ) (1)

The integral image data are stored in a continuous 

block of memory accessed by address, a = x + 16y. i(x, 

y) is pixel data supplied to the generator. The portion 

i(x, y) + r(x –1,y) can be calculated using a 

multiply-accumulator. ii(x, y – 1) have to be read 

from the memory. However, since the M4K block used 

to store ii(x, y) data can only have 1 read port due to 

the configuration used [27], and this read port has to 

feed ii(x, y) data to the Haar-feature calculator, another 

M4K block was instantiated to store ii(x, y – 1). The 

reset of the multiply-accumulator on a new row (y) 

and the addition of ii(x, y – 1) are handled by the 

control logic. The hardware is duplicated to calculate 

integral image squared, with the exception of having an 

extra multiplier to calculate the image squared.

The memory address space is mapped to the system 

bus for simpler access. The processor is required to 

send pixel data contiguously from (x, y) = (0, 0) to (x, 

y) = (15, 7).Integral image data is available immediately 

after sending the necessary pixel data. The processor is 

able to send a pixel value to the integral image 

generator in 1 clock cycle because there are no wait 

states. Therefore, 128 clock cycles are needed to 

generate the full integral image and image squared 

(since there are 16×8 = 128 pixels). To compute this 

integral image and image squared on Nios II on 

Cyclone II FPGA, the processor would require 128 

cycles for integral image (addition takes 1 cycle per 

pixel) and 1024 cycles for integral image squared (each 

multiplication takes 5 cycles, plus 2-cycle multiplication 

latency and 1-cycle addition which makes 8 cycles 

required per pixel) [25]. In total, the processor needed 

1152 cycles to generate required data. Our 
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Fig. 4. Block Diagram of the Hardware Haar Feature Calculator

implementation is close to 10× faster compared to the 

processor alone

3.3 Hardware Haar-Feature Calculator

The Haar-feature calculator is a separate IP 

connected to the system bus. It calculates Haar-feature 

value, f values based on the following equation [10] 

which is implemented in OpenCV, where ω is the 

weight, R is the rectangle sum and r refers to the 

rectangles in a Haar feature. Only upright Haar 

features are used in this system:

           = 
∈  

          (2)

The Haar-feature calculator is implemented in 

fixed-point arithmetic, and works on 2 rectangles only 

(see Figure 1). The fixed-point method has little effect 

on detection rate [9]. The reason for having a 

2-rectangle only Haar-feature calculator is that 

3-rectangle Haar features are rarely found in the 

trained Haar cascade. The processor is used to 

calculate the third rectangle if there is any 3-rectangle 

Haar feature. The weight ω1 for the first rectangle is 

always –1 (therefore the second rectangle will be 

subtracted by the first rectangle), while the weight ω2 

for the second rectangle can be either 2 or 3 depending 

on the Haar feature [10]. For this reason, simpler Gain 

blocks are used instead of multipliers to represent the 

weights. The Haar-feature calculator works by having 

the processor to write integral image and values into 

the registers. Each write requires 2 clock cycles (due to 

wait states). The Haar-feature calculator then 

processes the data and outputs the Haar-feature value 

in 2 clock cycles when read by processor. Note that 

this Haar-feature calculator also computes the variance 

required for normalization [1], in which it takes in 

integral image squared values. 4 writes are required to 

supply all the integral image data to the calculator 

(each write carries 2 integral image values), while 5 

writes are required to supply all the integral image 

squared data and inverse of total number of pixels in 

the Haar feature to the calculator (each write carries 
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Fig. 5. Program flowchart of the SW Component

one integral image squared data, while the inverse of 

total number of pixels takes another write operation). 2 

reads are required to obtain the Haar-feature value and 

variance. This leads to a total of 22 clock cycles to get 

all required data. Whilst simple the Haar calculator may 

be, it is faster by 14 cycles compared to calculating the 

Haar-feature values on the processor alone (which 

needs 36 cycles in fixed-point or otherwise integer 

arithmetic, see [25]). Haar-feature values are used by 

the processor for classification. The processor will 

compute the standard deviation from the variance 

obtained.

3.4 Software-Based Components

The processor is responsible for the movement of 

data between the SDRAM (image data), integral image 

generator and Haar-feature calculator. Scaling of image 

data into sub-windows, Haar classifications and 

PERCLOS calculations are also handled by the 

processor. Nearest neighbor algorithm is used for the 

scaling of images. As mentioned, Haar classifications 

are performed on the processor. PERCLOS calculations 

are achieved by maintaining the latest 60 seconds of 

eye detection data in a linked list. The overall program 

flow is shown in Figure 5.

4. Implementation Results

 4.1 Classifier Detection Rate

To train a cascade that is tailored for eye detection, 

OpenCV was used. First, a large dataset of positive eye 

samples was collected from various online face 

databases ([28] and [29]). Negative samples were also 

collected from the Internet, mainly from Urtho’s [30] 

negative sets. Then training was conducted at sample 

size of 16×8. When labeling eye samples for training, 

the aspect ratio was kept at 16×8 to minimise training 

distortions due to stretching of eye samples if the 

aspect ratio is not 16×8. The outcome of this training 

process is a 3-stage cascade with 103 simple Haar 

classifiers for the first stage, 234 for the second stage 

and 411 for the third stage. When tested on a subset of 

Yale B face database with 193 true positives, this 

cascade achieved 69.4% hit rate and 0.05% false 

positives. comparing We compared this cascade with 

popular Haar cascades for eye detection from the 

Internet, and the results are summarised in Table I. 

Haar
Cascade

Positive 
Hits

Hit
Rate

False
Positives

Own 134 69.4% 8
Urtho 125 64.8% 36

Ting Shan [31] 125 64.8% 1826
Shameem [31] 51 26.4% 82

Table 1. Comparison of Haar Cascades

Eye Detector Platform
Hit
Rate

This work FPGA 69.4%
Betke and   Mullally [3] GPP 83.0%

Orazio et al. [4] GPP 93.7%
Veeraraghavan and   

Papanikolopoulos [14]
GPP 70.9%

Smith et al. [23] SPARC 95.1%

Table 2. Comparison of Eye Detectors
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There are more than one cascade in [31], but only 

Ting Shan’s and Shameem’s can differentiate opened 

eyes from closed eyes, which is what we have trained 

our cascade for. Compared to the closest competitor 

from Urtho – a 20-stage cascade with a total of 1410 

simple classifier, our cascade not only possesses higher 

hit rate but also produces considerably less false 

positives, albeit at less stages, which may reduce 

performance due to the high number of simple 

classifiers per stage.

Our Haar cascade is also compared with other works 

that have published eye detection results, as shown in 

the Table II. The issue with such comparisons is that 

the detection dataset is always not equivalent; therefore 

an exactly fair benchmark comparison is difficult to 

infer. The results are obtained by averaging all 

open-eye hit rates (regardless of left/right eyes) based 

on dataset that are not part of the training dataset.

Fig. 6. Receiver operating characteristic for the

trained cascade.

Smith et al. [23] boosts the highest hit rate with low 

false positives, but it ran on an UltraSparc system. 

Orazio et al. [4] has the second highest hit rate with 

low false positives, however it is also the system that 

requires the highest computational needs – Pentium 4 

running at 3.2 GHz due to its use of Hough transform. 

Betke and Mullally [3] has good hit rates, but it also 

runs on a general purpose platform. Veeraraghavan and 

Papanikolopoulos [14] also reported a high hit rate, but 

template matching was used to detect eyes, which is 

commonly associated with low robustness.

4.2 Implementation Constraints

Due to time constraints, this system was developed 

with certain limitations.  First of all, a lesser, 14-stage 

200 simple classifiers cascade was used; with 67% hit 

rate but higher false positives. Moreover, sub-windows 

were generated on a fixed region of interest of the 

input images where the driver’s eyes are usually 

located. The region of interest was downscaled using a 

single fixed scaling factor of 0.1 (in the original 

algorithm, the sub-window is scaled using a multitude 

of scaling factors to cover the whole image). In other 

words, the prototype system did not scan the whole 

input image using the best Haar cascade we have 

trained. With these constraints in place, hardware 

performance is not immediately measurable.

4.3 Hardware Resources

The total hardware resources required for the above 

implementation, including resources used by the 

camera controller, is shown below in Table III.

With the highest optimization settings in Altera 

Quartus II [26], the detection system on the FPGA is 

capable of running at 171.17 MHz without the JTAG 

module. However, the FPGA is pegged at 50 MHz in 

this work owing to the constraint of the on-board 

oscillator which runs at 50 MHz, and the SDRAM runs 

at only 100 MHz. Moreover, the instructions for the 

processor are stored in SRAM, which can only be 

accessed at 25 MHz. This further limits the speed of 

the system. Faster memories and a faster oscillator 

would further improve performance. Our future work 

will look at possible enhancements that through 

utilization of a phase lock loop (PLL) to bootstrap the 

running speed. 
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Hardware Element Usage
Percentage of
Total Hardware

Logic Elements 7,338 22%
Memory Bits 157,528 33%
Embedded   
Multipliers

44 63%

PLLs 1 25%

Table 3. FPGA Hardware Utilization

4. Conclusions

In this paper, we present an embedded 

implementation of a PERCLOS-based DD detection 

system on a FPGA with a soft-core Nios II processor 

and a custom eye detection IP block. The eye detection 

algorithm in use is derived from Viola and Jones' work 

on Haar like feature AdaBoost algorithm. Critical parts 

of the algorithm are hardware-accelerated, while the 

remaining parts run on a soft-core processor. This 

HW/SW co-design implementation, an emerging trend 

in embedded computing, provides great reusability and 

speed. 

The current implementation can be further improved 

by having multiple integral image generators and Haar 

classifiers that work on different regions of the input 

image at the expense of greater FPGA resources. Dual 

processors and a higher bandwidth from the SDRAM 

are also needed for such enhancement. Another 

suggestion is to have the SDRAM controller, integral 

image generator and Haar classifier integrated together 

as a complete HW module using dedicated high-speed 

streaming interfaces rather than communicating over 

the system bus. This allows faster computation and 

earlier availability of feature 

The current implementation achieves near 70% of 

accuracy at less than 2% false alarm rate. For practical 

deployment, we would like to see a further elevation in 

the accuracy metric which is independent of the 

hardware implementation issues.
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