
31

HW/SW Co-design of a Visual Driver Drowsiness Detection System

Kok Choong Lai1*, M. L. Dennis Wong2, Syed Zahidul Islam3

1,2,3Faculty of Engineering, Computing and Science,Swinbume University of Technology,Sarawak,

Malaysia

요 약 치명적인 사고를 막기 위해 드라이버 졸음 (DD)를 검출하는 다양한 최근 방법이 제안되고있다. 본 논문은
운전자의 눈에 폐쇄 속도를 모니터링 할 수 있는 기능을 AdaBoost 기반 물체 검출 알고리즘에 적용한 DD 탐지 시스

템 구현에서 하드웨어/소프트웨어 공동 설계 방법을 제안한다. 소프트웨어 구성 요소는 DD 검출 알고리즘 중에서

필요한 기능성을 완전하게 달성하기 위해 전체적인 제어 및 논리 연산을 구현한다. 반면, 본 연구에서는 DD 검출

알고리즘의 중요한 기능은 처리를 가속화하기 위해 맞춤형 하드웨어 구성 요소를 통해 가속된다. 하드웨어/소프트웨

어 아키텍처는 비디오 도터 보드와 알테라 DE2 보드에 구현되었습니다. 제안 된 구현의 성능을 평가하고 몇 가지

최근의 작품을 벤치마킹했다.

Abstract There have been various recent methods proposed in detecting driver drowsiness (DD) to avert
fatal accidents. This work proposes a hardware/software (HW/SW) co-design approach in implementation of
a DD detection system adapted from an AdaBoost-based object detection algorithm with Haar-like features
[1] to monitor driver’s eye closure rate. In this work, critical functions of the DD detection algorithm is
accelerated through custom hardware components in order to speed up processing, while the software
component implements the overall control and logical operations to achieve the complete functionality
required of the DD detection algorithm. The HW/SW architecture was implemented on an Altera DE2 board
with a video daughter board. Performance of the proposed implementation was evaluated and benchmarked
against some recent works.

Key Words : drowsiness detection, hardware-software co-design, machine vision, FPGA, vehicular safety.

접수일 : 2013년 3월 7일 수정일 : 2013년 4월 16일 게재확정일 : 2013년 5월 8일
*교신저자 : Kok Choong Lai(blau@swinburne.edu.my)

1. Introduction

Driver drowsiness (DD) is one of the leading causes

of road accidents in many countries throughout the

world. Not only has it caused injuries and deaths, but

also resulted in the lost of properties and productivity as

well. There are many commercial systems that attempts

to mitigate the above problem to a certain extend, such

as lane departure warning systems and collision warning

systems. However, all these commercial systems have a

shortcoming – they generate warnings often after the

driver has already dozed off. More promising systems

that directly estimate driver's state of drowsiness, such

as systems that monitors the driver's steering response,

ECG, head movement, eye closure and movement,

yawning etc. shows higher effectiveness in detecting

and warning imminent DD. Of all these systems, those

that monitor the eye closure rate, such as PERCLOS [2]

is often favoured owing to its non-contact and

non-invasive nature.

There are many systems that use PERCLOS as the

measure of a DD. The implementations range from

중소기업정보기술융합학회 논문지 제3권 제1호 pp. 31-41, 2013

중소기업정보기술융합학회 논문지 제3권 제1호

32

simple edge detection-based systems [3] to complex

Hough transform-based systems [4]. However, simple

detection systems generally suffered from

low-accuracy or robustness. On the other hand,

complex systems are not easily adapted onto embedded

systems, therefore there is a lack of practicality in real

deployment. There are some known works in

embedded DD detection systems [5, 6]. However, these

systems did not employ complex detection algorithms

as described in this work.

In this work, we realized a FPGA-based DD

detection system using the object detection algorithm

by Viola and Jones [1]. The main motivation behind the

choice of this algorithm is due to its high detection rate

and fast processing. Furthermore, many prior attempts

of this algorithm [7--9] have confirmed the viability of

this algorithm for embedded platforms. The proposed

system will monitor driver’s eye closure rate,

PERCLOS to determine the driver's state of

drowsiness. In our design, in an attempt to strike a

balance between speed, complexity and cost of the final

product, we have opted to adopt a hardware/software

(HW/SW) co-design approach: to increase the speed of

detection, critical functions of the algorithm were

accelerated using custom hardware IPs. Other

non-critical functions were carried out by a soft-core

Nios II processor.

The remaining of this work is arranged as follows:

Section II provides a quick review of necessary

background materials and some related works. The

actual design and implementation are then presented in

Section III. Following which, we present and

benchmark the experimental results against related

works in Secion IV. Finally, in Section V, we conclude

this work in by highlighting some areas of future

extension.

2. Background Review and Related

 Works

The first half of this section describes briefly the

AdaBoost-based object detection, while the second half

summarizes existing visual-based DD detection

system.

2.1 AdaBoost-Based Object Detection

The Viola-Jones object detection algorithm (c.f. [1])

introduced by classifies objects by using simple

Haar-like features as shown in Figure 1, which detect

either line or edge features. In essence, the detection is

achieved by first individually summing up the pixel

values in the white region and the black region, and

then calculates the difference of the weighted sum of

each of the regions. TheThis set of Haar features were

extended in [10], which is the full set of features

adopted in OpenCV, a popular computer vision software

(C++) library [11].

Next, a weak classifier, one that has low

classification accuracy, compares the resultant value to

see if it exceeds a pre-defined threshold. If the

threshold is exceeded, the weak classifier outputs true,

meaning that the line or edge feature exists. A large

number of weak classifiers can then be combined to

form a strong classifier with high classification

accuracy that is able to detect more complicated

objects. The selection of features and the training of

classifiers are achieved using a variant of AdaBoost, a

supervised machine learning algorithm [12].

To detect object of different sizes in an input image,

a rectangular mask steps the entire image to generate

sub-images called sub-windows. Once the mask

completely scans the whole image, it increases its size

(aspect ratio is maintained) and scans the entire image

again to generate a new set of sub-windows. This

process is repeated until the maximum size of the mask

is reached. Detection is performed on a sub-window as

soon as it is generated.

The cascade structure was introduced by Viola and

Jones to achieve rapid processing. This cascade

structure consists of a series of strong classifiers called

stage classifiers. The idea is to train a cascade that can

quickly reject as much negative sub-windows in earlier

HW/SW Co-design of a Visual Driver Drowsiness Detection System

33

stages using simpler classifiers as possible, allowing

almost all positive instances to pass to the next stage.

Latter stages of more complex classifiers then process

the sub-windows that are more likely to contain the

object of interest in order to reduce false positives.

Since many negative sub-windows get rejected early

in the stages, are saved and the resultant detection

speed is higher.

2.2 Existing Eye-Monitoring Detection Systems

There are a large number of eye monitoring-based

detection systems [13 – 18] that uses an eye

illumination technique [19] to detect driver’s eyes. The

technique exploits the ‘red eye’ effect often seen on

pictures taken by a camera with flash on. By shining

two infrared lights of different direction onto the driver

in an alternating fashion, eyes can be detected on the

captured images by a bright glow emanating from the

pupils of the eyes. While this technique can detect eyes

well and operates in low-light conditions, the detection

is highly dependent on factors such as the brightness

and size of the pupils, face orientation, external

illumination interference, distance of the driver from the

camera etc. as described by [4].

1. Edge Features

3. Line Features

2. Centre-Surround Features

(a) (b)

(a) (b) (c) (d)

(a)

Fig. 1. Upright Haar-like features used in OpenCV [3].

Other systems that did not employ the IR

illumination technique started off with simple

image-processing methods such as binarisation [20],

eye width and height measurement [21], histograms

[22], edge detection [3, 5, 6] and template matching [3].

Wang and Chin [5] uses grayscale projection, edge

detection with Prewitt operator and complexity function

for eye detection, while Moreno et al. [6] uses edge

filters to highlight the edges of images, and sums up

the number of white/black pixels to detect eye regions.

Detection rate were not discussed.

As general processing platforms grew more

powerful there are systems that employ more complex

features, such as skin colour predicates [23] or skin

colour models together with an artificial neural network

[24] to detect the eyes. More recent system [4] applies

a modified circle Hough transform over the whole

image to detect possible candidate regions that contain

eyes. The system is complemented by an artificial

neural network to classify open or closed eyes. These

modern systems exhibit high accuracy. However, all of

the abovementioned systems are implemented on a

general purpose platform, as opposed to embedded

system.

As discussed earlier, there isn’t any embedded DD

detection system that uses a robust and

high-performing detection algorithm reported to date.

To our knowledge, this work is the first report of an

embedded DD detection system that uses the

Viola-Jones object detection algorithm.

3. Hardware Implementation

In our work, Altera Quartus II, SOPC Builder, DSP

Builder and MATLAB were used to develop the

prototype system. The controller for the camera used to

capture driver’s eyes, which deals with image data

acquisition and color-to-grayscale conversion, is not

described here. The prototype system is developed onto

Altera DE2 board with Altera Cyclone II 2C35 FPGA.

A video daughter card was used in conjunction with

the DE2 board.

As in a typical hardware realization of an algorithm,

a compromise between available hardware resources

중소기업정보기술융합학회 논문지 제3권 제1호

34

and processing speed is unavoidable. In our design, we

aim to attain as much parallelism as possible with

available hardware resources in order to achieve

real-time detection. Our implementation follows closely

to that of OpenCV.

3.1 Overview of HW/SW Co-Design

Figure 2 shows the overall block diagram of the

FPGA implementation. In our implementation, we chose

the fast version of Altera Nios II [25] as the processor

(soft-core), connected to the memory-mapped system

bus known as Avalon Switch Fabric. The reason for

the fast version is because we have several

components of the detection algorithm running on

software; therefore a faster processor allows faster

execution of these software components. The eye

detection module consists of two IPs, the Integral

Image Generator and the Haar Calculator.

FPGA

Avalon Switch Fabric (Bus)

Nios II
Processor

JTAG
Module

SRAM
Controller

SRAM
(256×16)

Host

Camera
Controller

SDRAM
(1M×16×4 banks)

VGA
Out

Camera

Eye Detector
Module

Timestamp
Timer

Arrow shows
direction of data traffic

Fig. 2. Components of the hardware software co-design

implementation

Each of them has a separate connection to the

system bus. The camera is controlled by the camera

controller. The SDRAM controller resides in the

camera controller, and stores all captured images from

the camera. The camera controller was modified to

include an Avalon Memory-Mapped (Avalon-MM)

interface [26] to allow system access to the SDRAM.

Wait states were inserted into the camera controller

slave interface in order to maintain high synthesized

speed. It takes 4 clock cycles for the processor to read

from a new address in SDRAM. Processor instructions

and data are stored in SRAM. The timestamp timer is

needed for PERCLOS calculations. The alarm module is

connected to an alarm-generating device, i.e. buzzer

and speaker etc. JTAG is used for software debugging

purposes and can be removed without affecting the

system.

3.2 Hardware Integral Image Generator

An integral image is the sum of all pixel values

above and to the left, inclusive. Our implementation

follows the idea described in [9]. Instead of scaling the

sub-window to fit larger Region of Interest (ROI) of

the input image, the ROI is scaled to fit a fixed-sized

sub-window. Nearest neighbor algorithm was used for

scaling. Since the sub-window is fixed in size, there is

no need to scale Haar-like features. This saves limited

hardware resources, such as memory storage.

Moreover, scaling input images has very little effect on

detection rate, as proven by [9].

The integral image(and integral image squared)

generator comprises of multiply-accumulators (MAC)

and memories (RAM). It generates integral image

based on image data inside the sub-window. This

method as described in [7] forgoes the use of large

storage to store the entire integral image based on a

single input image frame. The drawback, however, is

that every time a sub-window changes, a new integral

image is generated, even if only a few pixels in the

sub-window changes (i.e. steps to the right). The

result is excessive repetitive computation, but is

warranted due to the limited embedded memories inside

the FPGA. Our implementation uses the fixed

sub-window of 16×8 pixels, which is able to fit inside

a single 7-bit address, 32-bit data M4K block (4608

bits including parity) in the Altera FPGA [27].

The integral image generator uses two memory

blocks to store temporary integral image data in order

to generate the integral image in one succession. To

HW/SW Co-design of a Visual Driver Drowsiness Detection System

35

A
va

lo
n

S
w

itc
h

Fa
br

ic

Avalon-
MM

Slave
Interface
(Write) Multiply-

Accumulator

Control
Logic

M4K Memory
(128×32)

M4K Memory
(128×32)

Adder

Avalon-
MM

Slave
Interface
(Read)

Mux

Write address
(x, y)

Write
address

Write data
i(x, y)

Read
address

(x, y)

Read
data
ii(x, y)

Reset on
x = 0

(new row) Cumulative
column data

c(x, y)

Previous row data
ii(x, y – 1)

Write address
(x, y)

Read address
(x, y)

Read data
ii(x, y)

Integral image data
ii(x, y)

Integral
image data

ii(x, y)

Read
previous row

address
(x, y – 1)

Read
previous row

data
ii(x, y – 1)

Select
previous row data

on x > 0Forward write data
to integral image

squared block

Fig. 3. Block Diagram of the Hardware Integral Image Generator.

illustrate this, we have to look at the following

equation, where ii refers to integral image values, while

c refers to the cumulative column sum:

(, =(,)+(, )+(, ) (1)

The integral image data are stored in a continuous

block of memory accessed by address, a = x + 16y. i(x,

y) is pixel data supplied to the generator. The portion

i(x, y) + r(x –1,y) can be calculated using a

multiply-accumulator. ii(x, y – 1) have to be read

from the memory. However, since the M4K block used

to store ii(x, y) data can only have 1 read port due to

the configuration used [27], and this read port has to

feed ii(x, y) data to the Haar-feature calculator, another

M4K block was instantiated to store ii(x, y – 1). The

reset of the multiply-accumulator on a new row (y)

and the addition of ii(x, y – 1) are handled by the

control logic. The hardware is duplicated to calculate

integral image squared, with the exception of having an

extra multiplier to calculate the image squared.

The memory address space is mapped to the system

bus for simpler access. The processor is required to

send pixel data contiguously from (x, y) = (0, 0) to (x,

y) = (15, 7).Integral image data is available immediately

after sending the necessary pixel data. The processor is

able to send a pixel value to the integral image

generator in 1 clock cycle because there are no wait

states. Therefore, 128 clock cycles are needed to

generate the full integral image and image squared

(since there are 16×8 = 128 pixels). To compute this

integral image and image squared on Nios II on

Cyclone II FPGA, the processor would require 128

cycles for integral image (addition takes 1 cycle per

pixel) and 1024 cycles for integral image squared (each

multiplication takes 5 cycles, plus 2-cycle multiplication

latency and 1-cycle addition which makes 8 cycles

required per pixel) [25]. In total, the processor needed

1152 cycles to generate required data. Our

중소기업정보기술융합학회 논문지 제3권 제1호

36

A
va

lo
n

Sw
itc

h
F

ab
ric

Avalon-
MM

Slave
Interface
(Write)

Avalon-
MM

Slave
Interface
(Read)

Register
File

4-Port
Add/

Substract

4-Port
Add/

Substract

4-Port
Add/

Substract

Fixed-Point
Conversion

Fixed-Point
Conversion

Fixed-Point
Conversion

Gain

Gain

Mux

Substract

Multiplier

Multiplier

Multiplier

Substract

Mux

Read
address

Data
Haar feature value

Variance

Write
address

Write
data

First
rectangle

Second
rectangle

Integral
image

squared in
Haar feature

Weight for first
rectangle = –1,

therefore
substract

–

+

2

3

Select gain
based on

Haar feature

Haar
Feature
value

Variance

Inverse of
total number of

pixels in
Haar feature,

1/N

1/N

Pixel squared
sum in Haar

feature 1/N

Pixel sum
In

Haar feature

Mean of
pixel
value

Fig. 4. Block Diagram of the Hardware Haar Feature Calculator

implementation is close to 10× faster compared to the

processor alone

3.3 Hardware Haar-Feature Calculator

The Haar-feature calculator is a separate IP

connected to the system bus. It calculates Haar-feature

value, f values based on the following equation [10]

which is implemented in OpenCV, where ω is the

weight, R is the rectangle sum and r refers to the

rectangles in a Haar feature. Only upright Haar

features are used in this system:

  = 
∈  

 (2)

The Haar-feature calculator is implemented in

fixed-point arithmetic, and works on 2 rectangles only

(see Figure 1). The fixed-point method has little effect

on detection rate [9]. The reason for having a

2-rectangle only Haar-feature calculator is that

3-rectangle Haar features are rarely found in the

trained Haar cascade. The processor is used to

calculate the third rectangle if there is any 3-rectangle

Haar feature. The weight ω1 for the first rectangle is

always –1 (therefore the second rectangle will be

subtracted by the first rectangle), while the weight ω2

for the second rectangle can be either 2 or 3 depending

on the Haar feature [10]. For this reason, simpler Gain

blocks are used instead of multipliers to represent the

weights. The Haar-feature calculator works by having

the processor to write integral image and values into

the registers. Each write requires 2 clock cycles (due to

wait states). The Haar-feature calculator then

processes the data and outputs the Haar-feature value

in 2 clock cycles when read by processor. Note that

this Haar-feature calculator also computes the variance

required for normalization [1], in which it takes in

integral image squared values. 4 writes are required to

supply all the integral image data to the calculator

(each write carries 2 integral image values), while 5

writes are required to supply all the integral image

squared data and inverse of total number of pixels in

the Haar feature to the calculator (each write carries

HW/SW Co-design of a Visual Driver Drowsiness Detection System

37

Start camera to capture
a new single image

into SDRAM

Generate integral image
and integral image

squared using hardware
integral image generator

Begin

Generate new sub-window
from fixed region in

input image

Execute entire Haar
cascade using hardware
Haar-feature calculator

Reset timer and
detection history

Obtain lapsed time from
timer, add time and

detection data
into linked list

Calculate/Update
PERCLOS value

Eye detected in
sub-window?

Yes

No

PERCLOS > 15%?

Trigger alarm

Yes

No

All fixed region
scanned?

Flag eye detected to
detection history

No

Yes

Construct new
linked list data structure

Fig. 5. Program flowchart of the SW Component

one integral image squared data, while the inverse of

total number of pixels takes another write operation). 2

reads are required to obtain the Haar-feature value and

variance. This leads to a total of 22 clock cycles to get

all required data. Whilst simple the Haar calculator may

be, it is faster by 14 cycles compared to calculating the

Haar-feature values on the processor alone (which

needs 36 cycles in fixed-point or otherwise integer

arithmetic, see [25]). Haar-feature values are used by

the processor for classification. The processor will

compute the standard deviation from the variance

obtained.

3.4 Software-Based Components

The processor is responsible for the movement of

data between the SDRAM (image data), integral image

generator and Haar-feature calculator. Scaling of image

data into sub-windows, Haar classifications and

PERCLOS calculations are also handled by the

processor. Nearest neighbor algorithm is used for the

scaling of images. As mentioned, Haar classifications

are performed on the processor. PERCLOS calculations

are achieved by maintaining the latest 60 seconds of

eye detection data in a linked list. The overall program

flow is shown in Figure 5.

4. Implementation Results

 4.1 Classifier Detection Rate

To train a cascade that is tailored for eye detection,

OpenCV was used. First, a large dataset of positive eye

samples was collected from various online face

databases ([28] and [29]). Negative samples were also

collected from the Internet, mainly from Urtho’s [30]

negative sets. Then training was conducted at sample

size of 16×8. When labeling eye samples for training,

the aspect ratio was kept at 16×8 to minimise training

distortions due to stretching of eye samples if the

aspect ratio is not 16×8. The outcome of this training

process is a 3-stage cascade with 103 simple Haar

classifiers for the first stage, 234 for the second stage

and 411 for the third stage. When tested on a subset of

Yale B face database with 193 true positives, this

cascade achieved 69.4% hit rate and 0.05% false

positives. comparing We compared this cascade with

popular Haar cascades for eye detection from the

Internet, and the results are summarised in Table I.

Haar
Cascade

Positive
Hits

Hit
Rate

False
Positives

Own 134 69.4% 8
Urtho 125 64.8% 36

Ting Shan [31] 125 64.8% 1826
Shameem [31] 51 26.4% 82

Table 1. Comparison of Haar Cascades

Eye Detector Platform
Hit
Rate

This work FPGA 69.4%
Betke and Mullally [3] GPP 83.0%

Orazio et al. [4] GPP 93.7%
Veeraraghavan and

Papanikolopoulos [14]
GPP 70.9%

Smith et al. [23] SPARC 95.1%

Table 2. Comparison of Eye Detectors

중소기업정보기술융합학회 논문지 제3권 제1호

38

There are more than one cascade in [31], but only

Ting Shan’s and Shameem’s can differentiate opened

eyes from closed eyes, which is what we have trained

our cascade for. Compared to the closest competitor

from Urtho – a 20-stage cascade with a total of 1410

simple classifier, our cascade not only possesses higher

hit rate but also produces considerably less false

positives, albeit at less stages, which may reduce

performance due to the high number of simple

classifiers per stage.

Our Haar cascade is also compared with other works

that have published eye detection results, as shown in

the Table II. The issue with such comparisons is that

the detection dataset is always not equivalent; therefore

an exactly fair benchmark comparison is difficult to

infer. The results are obtained by averaging all

open-eye hit rates (regardless of left/right eyes) based

on dataset that are not part of the training dataset.

Fig. 6. Receiver operating characteristic for the

trained cascade.

Smith et al. [23] boosts the highest hit rate with low

false positives, but it ran on an UltraSparc system.

Orazio et al. [4] has the second highest hit rate with

low false positives, however it is also the system that

requires the highest computational needs – Pentium 4

running at 3.2 GHz due to its use of Hough transform.

Betke and Mullally [3] has good hit rates, but it also

runs on a general purpose platform. Veeraraghavan and

Papanikolopoulos [14] also reported a high hit rate, but

template matching was used to detect eyes, which is

commonly associated with low robustness.

4.2 Implementation Constraints

Due to time constraints, this system was developed

with certain limitations. First of all, a lesser, 14-stage

200 simple classifiers cascade was used; with 67% hit

rate but higher false positives. Moreover, sub-windows

were generated on a fixed region of interest of the

input images where the driver’s eyes are usually

located. The region of interest was downscaled using a

single fixed scaling factor of 0.1 (in the original

algorithm, the sub-window is scaled using a multitude

of scaling factors to cover the whole image). In other

words, the prototype system did not scan the whole

input image using the best Haar cascade we have

trained. With these constraints in place, hardware

performance is not immediately measurable.

4.3 Hardware Resources

The total hardware resources required for the above

implementation, including resources used by the

camera controller, is shown below in Table III.

With the highest optimization settings in Altera

Quartus II [26], the detection system on the FPGA is

capable of running at 171.17 MHz without the JTAG

module. However, the FPGA is pegged at 50 MHz in

this work owing to the constraint of the on-board

oscillator which runs at 50 MHz, and the SDRAM runs

at only 100 MHz. Moreover, the instructions for the

processor are stored in SRAM, which can only be

accessed at 25 MHz. This further limits the speed of

the system. Faster memories and a faster oscillator

would further improve performance. Our future work

will look at possible enhancements that through

utilization of a phase lock loop (PLL) to bootstrap the

running speed.

HW/SW Co-design of a Visual Driver Drowsiness Detection System

39

Hardware Element Usage
Percentage of
Total Hardware

Logic Elements 7,338 22%
Memory Bits 157,528 33%
Embedded
Multipliers

44 63%

PLLs 1 25%

Table 3. FPGA Hardware Utilization

4. Conclusions

In this paper, we present an embedded

implementation of a PERCLOS-based DD detection

system on a FPGA with a soft-core Nios II processor

and a custom eye detection IP block. The eye detection

algorithm in use is derived from Viola and Jones' work

on Haar like feature AdaBoost algorithm. Critical parts

of the algorithm are hardware-accelerated, while the

remaining parts run on a soft-core processor. This

HW/SW co-design implementation, an emerging trend

in embedded computing, provides great reusability and

speed.

The current implementation can be further improved

by having multiple integral image generators and Haar

classifiers that work on different regions of the input

image at the expense of greater FPGA resources. Dual

processors and a higher bandwidth from the SDRAM

are also needed for such enhancement. Another

suggestion is to have the SDRAM controller, integral

image generator and Haar classifier integrated together

as a complete HW module using dedicated high-speed

streaming interfaces rather than communicating over

the system bus. This allows faster computation and

earlier availability of feature

The current implementation achieves near 70% of

accuracy at less than 2% false alarm rate. For practical

deployment, we would like to see a further elevation in

the accuracy metric which is independent of the

hardware implementation issues.

Acknowledgment

A portion of the face images used in this work have

been provided by and the Computer Vision Laboratory,

UniversityofLjubljana,Slovenia[29].

The authors would like to thank Swinburne

University of Technology Sarawak Campus for

partially supporting this work. The authors also thank

Altera Inc. for kindly sponsoring the DE2 board used in

this work through its University Program. KCL would

like to thank Aileen Poh Khai Ling for her support

during this work.

References

[1] Viola, P & Jones, M 2001, ‘Rapid Object Detection using

a Boosted Cascade of Simple Features’, Proceedings of the

IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, vol. 1, pp. I-511 – I-518, IEEE,

10.1109/CVPR.2001.990517.

[2] Wierwille, WW, Ellsworth, LA, Wreggit, SS, Fairbanks, RJ

& Kirn, CL, 1994, Research on Vehicle-Based Driver

Status/Performance Monitoring: Development, Validation,

and Refinement of Algorithms For Detection of Driver

Drowsiness, National Highway Traffic Safety

Administration, New Jersey.

[3] Betke, M & Mullally, WJ 2000, ‘Preliminary Investigation

of Real-Time Monitoring of A Driver In City Traffic’,

Proceedings of the IEEE Intelligent Vehicles Symposium,

pp. 563-568, IEEE, 10.1109/IVS.2000.898407.

[4] D’Orazio, T, Leo, M, Guaragnella, C & Distante, A 2007,

‘A visual approach for driver inattention detection’, Pattern

Recognition, vol. 40, no. 8, pp. 2341-2355.

[5] Wang, F & Qin, H 2005, ‘A FPGA Based Driver

Drowsiness Detecting System’, IEEE International

Conference on Vehicular Electronics and Safety, pp.

358-363, IEEE, 10.1109/ICVES.2005.1563673.

[6] Moreno, F, Aparicio, F, Hernandez, W & Paez, J 2003, ‘A

low-cost Real-Time FPGA solution for driver drowsiness

detection’, The 29th Annual Conference of the IEEE

Industrial Electronics Society, vol. 2, pp. 1396-1401, IEEE,

10.1109/IECON.2003.1280262.

[7] Wei, Y, Bing X & Chareonsak, C 2004, ‘FPGA

Implementation of AdaBoost Algorithm for Detection of

중소기업정보기술융합학회 논문지 제3권 제1호

40

Face Biometrics’, IEEE International Workshop on

Biomedical Circuits and Systems, pp. S1/6- 17-20, IEEE,

10.1109/BIOCAS.2004.1454161.

[8] Nair, V, Laprise, P & Clark, J 2005, ‘An FPGA-Based

People Detection System’. EURASIP Journal on Applied

Signal Processing, vol. 2005, no. 1, pp. 1047–1061, ACM

Portal: ACM Digital Library.

[9] Hiromoto, M, Nakahara , K & Sugano, H 2007, ‘A

Specialized Processor Suitable for AdaBoost-Based

Detection with Haar-like Features’, IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1-8, IEEE,

10.1109/CVPR.2007.383415.

[10] Lienhart, R & Maydt, J 2002, ‘An Extended Set of

Haar-like Features for Rapid Object Detection’, IEEE

International Conference on Inage Processing, vol. 1, pp.

900-903.

[11] Open Source Computer Vision Library 2008, Intel

Corporation, SantaClara.

[12] Freund , Y & Schapire, RE 1995, ‘A Decision-Theoretic

Generalization Of On-Line Learning And An Application

To Boosting’, Computational Learning Theory: Eurocolt,

pp. 23–37, Springer-Verlag.

[13] Grace, R, Byrne, VE, Bierman, DM, Legrand, JM,

Gricourt, D, Davis, RK, Staszewski, JJ & Carnahan, B

1998, ‘A Drowsy Driver Detection System For Heavy

Vehicles’, Proceedings of the 17th DASC

AIAA/IEEE/SAE Digital Avionics Systems Conference,

vol. 2, pp. I36/1-I36/8, IEEE, 10.1109/DASC.1998.739878.

[14] Veeraraghavan, H & Papanikolopoulos, N 2001, Detecting

Driver Fatigue Through the Use of Advanced Face

Monitoring Techniques, UniversityofMinnesota, Minneapolis.

[15] Ji, Q & Yang, X 2002, ‘Real-Time Eye, Gaze, and Face

Pose Tracking for Monitoring Driver Vigilance’, Real

Time Imaging, vol. 8, pp. 357-377.

[16] Ji, Q, Zhu, Z & Lan, P 2004, ‘Real-Time Nonintrusive

Monitoring and Prediction of Driver Fatigue’, IEEE

Transactions on Vehicular Technology, vol. 53, no. 4, pp.

1052-1068, IEEE, 10.1109/TVT.2004.830974.

[17] Cudalbu, C, Anastasiu, B, Radu, R, Cruceanu, R, Schmidt,

E & Barth, E 2005, ‘Driver Monitoring With A Single

High-Speed Camera And IR Illumination’, International

Symposium on Signals, Circuits and Systems, vol. 1, pp.

219-222, IEEE, 10.1109/ISSCS.2005.1509893.

[18] Bergasa, LM, Nuevo, J, Sotelo, MA & Vazquez, M 2006,

‘Real-Time System for Monitoring Driver Vigilance’,

IEEE Transactions on Intelligent Transportation Systems,

vol. 7, no. 1, pp. 63-77, IEEE, 10.1109/TITS.2006.869598.

[19] Ebisawa, Y & Satoh, S 1993, ‘Effectiveness of pupil area

detection technique using two light sources and image

difference method’, Proceedings of the 15th Annual

International Conference of the IEEE Engineering in

Medicine and Biology Society, pp. 1268-1269, IEEE.

[20] Ueno, H, Kaneda, M & Tsukino, M 1994, ‘Development of

Drowsiness Detection System’, Proceedings of the Vehicle

Navigation and Information Systems Conference, pp.

15-20, IEEE, 10.1109/VNIS.1994.396873.

[21] Sakaguchi, Y. Nakano, T. Yamamoto, S. 1996,

‘Development of non-contact gaze detecting system and

its applications to gaze duration measurement of on-board

display’, Proceedings of the IEEE Intelligent Vehicles

Symposium, IEEE, pp. 289-294, IEEE,

10.1109/IVS.1996.566393.

[22] Eriksson, M.; Papanikotopoulos, N.P. 1997, ‘Eye-Tracking

for Detection of Driver Fatigue’, IEEE Conference on

Intelligent Transportation System, vol. 9, no. 12, pp.

314-319, IEEE, 10.1109/ITSC.1997.660494.

[23] Smith, P, Shah, M & da Vitoria Lobo, N 2003,

‘Determining Driver Visual Attention With One Camera’,

IEEE Transactions on Intelligent Transportation Systems,

vol. 4, no. 4, pp. 205-218, IEEE, 10.1109/TITS.2003.821342.

[24] Wang, R, Guo, K, Shi S & Chu, J 2003, ‘A Monitoring

Method of Driver Fatigue Behavior Based on Machine

Vision’, Proceedings of the Intelligent Vehicles

Symposium, vol. 9, no. 11, pp. 110-113, IEEE,

10.1109/IVS.2003.1212893.

[25] Nios II Processor Reference Handbook 2007, Altera

Corporation, SanJose.

[26] Quartus II Handbook 2008, Altera Corporation, SanJose.

[27] Cyclone II Device Handbook 2008, Altera Corporation,

SanJose.

[28] Kanade, T., Cohn, J. F., & Tian, Y. (2000). Comprehensive

database for facial expression analysis. Proceedings of the

Fourth IEEE International Conference on Automatic Face

and Gesture Recognition (FG'00), Grenoble,France,46-53.

[29] CVL FACE DATABASE: http://www.lrv.fri.

uni-lj.si/facedb.html

[30] Urtho 2007, Urtho's face detection & normalization

project, http://face.urtho.net/.

[31] Reimondo, A 2008, Haar Cascades, http://www.

alereimondo. com.ar/OpenCV.

HW/SW Co-design of a Visual Driver Drowsiness Detection System

41

저 자 소 개

Kok Choong Lai [정회원]
▪2008 Sept : School of

Engineering, Swinburne

University of Technology,

Sarawak Campus

 (BEng (Hons) Electronics and

Computer Systems)

▪2008. July.～ Present: Senior Design Verification

Egineer Intel Microelectronics (M) Sdn Bhd

▪E-Mail : joshua.lai@intel.com

 <관심분야> : Pre-silicon design and validation,

computer architecture, statistical modeling, data

mining

M. L.Dennis Wong [정회원]
▪2005 July: School of Engineering,

SUTS, Malaysia.

▪2008.July.: Dept. EEE, Universiti

Tenaga Nasional, Malaysia

▪2013. May.～ Present: Research

Fellow & Faculty Member York

University, Toronto, ON

▪E-Mail : sislam@cse.yorku.ca

 <관심분야> : VLSI Design and Testing, Biomedical

System Design, FPGA Design

Syed Zahidul Islam [정회원]
▪1999 July : Dept. EEE, University

of Liverpool, U.K.(BEng (Hons)

Electronics and Communications)

▪2004.July.: Dept. EEE, University

of Liverpool, U.K.(PhD (Signal

Processing))

▪2012. June.～ Present: Associate Professor and Dean,

 Swinburne University of Technology, Sarawak

Campus

▪E-Mail: dwong@swinburne.edu.my

 <관심분야> : Statistical Pattern Recognition,

Cancellable Biometrics, VLSI Digital Signal

Processing

